Advertisement

Journal of Neural Transmission

, Volume 113, Issue 5, pp 543–556 | Cite as

Repeated Catha edulis oral administration enhances the baseline aggressive behavior in isolated rats

  • M. Y. Banjaw
  • K. Miczek
  • W. J. Schmidt
Article

Summary.

The effects of repeated oral administration of the psychostimulant plant, Catha edulis and its active principle, cathinone on rats were studied using isolation induced aggression paradigm. The behavioral responses were videotaped and scored later by offline data analyses. Rats were decapitated at the end of the behavioral experiment and in the relevant brain regions, monoamines were assessed. The results demonstrate that isolation of male rats produces a baseline aggression. Treatments with the psychostimulant plant, Catha edulis or commercial S-(−)-cathinone enhanced significantly: The locomotor activities and the baseline aggression behaviors compared with vehicle treated rats. Neurochemical correlates revealed a significant depletion of serotonin (5-HT) and its corresponding metabolites (5-HIAA) in both the anterior and posterior striatum. There was also a reduction in the level of homovanillic acid (HVA) in the hippocampus. Additionally, elevation of dopamine level was observed in the nucleus accumbens, especially, in those rats treated with Catha edulis extract. Cathinone, on the other hand, increased the level of HVA in the posterior striatum and decreased HVA in the nucleus accumbens. In conclusion, the present data demonstrate that repeated administration of Catha edulis or S-(−)-cathinone enhances aggression in rats, presumably by decreasing the level of serotonin and its corresponding metabolites. Besides, the data obtained do not rule out the involvement of dopamine in aggression behavior.

Keywords: Catha edulis, S-(−)-cathinone, aggression, neurotransmitter levels. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. Alem, A, Shibre, T 1997Khat induced psychosis and its medico-legal implication: a case reportEthiop Med J35137139PubMedGoogle Scholar
  2. Awas, M, Kebede, D, Alem, A 1999Major mental disorders in Butajira, southern EthiopiaActa Psychiatr Scand [Suppl]3975664Google Scholar
  3. Banjaw, MY, Schmidt, WJ 2005Behavioral sensitization following repeated intermittent oral administration of Catha edulis in ratsBehav Brain Res156181189CrossRefPubMedGoogle Scholar
  4. Bowling, SL, Bardo, MT 1994Locomotor and rewarding effects of amphetamine in enriched, social, and isolate reared ratsPharmacol Biochem Behav48459464CrossRefPubMedGoogle Scholar
  5. Boyle, AE, Gill, K, Smith, BR, Amit, Z 1991Differential effects of an early housing manipulation on cocaine-induced activity and self-administration in laboratory ratsPharmacol Biochem Behav39269274CrossRefPubMedGoogle Scholar
  6. Brain PF, Benton D (1981) Multidisciplinary approaches to aggression research. Elsevier/North-Holland Biomedical Press, Amsterdam New York OxfordGoogle Scholar
  7. Calcagnetti, DJ, Schechter, MD 1992aIncreases in the locomotor activity of rats after intracerebral administration of cathinoneBrain Res29843846Google Scholar
  8. Calcagnetti, DJ, Schechter, MD 1992bPsychostimulant-induced activity is attenuated by two putative dopamine release inhibitorsPharmacol Biochem Behav4310231031CrossRefGoogle Scholar
  9. Coccaro EF, Siever LJ (2002) Pathophysiology and treatment of aggression. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  10. Cox, G, Ramps, H 2003Adverse effects of Khat: a reviewAdv Psychiatr Treatment9456463CrossRefGoogle Scholar
  11. Darmani, NA, Hadfield, MG, Carter, WH,Jr, Martin, BR 1990Acute and chronic effects of cocaine on isolation-induced aggression in micePsychopharmacology (Berl)1023740CrossRefGoogle Scholar
  12. Daruna, JH, Kent, EW 1976Comparison of regional serotonin levels and turnover in the brain of naturally high and low aggressive ratsBrain Res101489501CrossRefPubMedGoogle Scholar
  13. Glennon, RA, Liebowitz, SM 1982Serotonin receptor affinity of cathinone and related analoguesJ Med Chem25393397CrossRefPubMedGoogle Scholar
  14. Goerss, AL, Wagner, GC, Hill, WL 2000Acute effects of aspartame on aggression and neurochemistry of ratsLife Sci6713251329CrossRefPubMedGoogle Scholar
  15. Gordon, TL, Meehan, SM, Schechter, MD 1993Differential effects of nicotine but not cathinone on motor activity of P and NP ratsPharmacol Biochem Behav44657659CrossRefPubMedGoogle Scholar
  16. Hall, FS, Wilkinson, LS, Humby, T, Inglis, W, Kendall, DA, Marsden, CA, Robbins, TW 1998Isolation rearing in rats: pre- and postsynaptic changes in striatal dopaminergic systemsPharmacol Biochem Behav59859872CrossRefPubMedGoogle Scholar
  17. Heffner, TG, Hartman, JA, Seiden, LS 1980A rapid method for the regional dissection of the rat brainPharmacol Biochem Behav13453456CrossRefPubMedGoogle Scholar
  18. Kalix, P 1982The amphetamine-like releasing effect of the alkaloid (−)cathinone on rat nucleus accumbens and rabbit caudate nucleusProg Neuropsychopharmacol Biol Psychiatry64349PubMedGoogle Scholar
  19. Kalix, P 1991The pharmacology of psychoactive alkaloids from Ephedra and CathaJ Ethnopharmacol32201208CrossRefPubMedGoogle Scholar
  20. Kalix, P, Branden, O 1985Pharmacological aspects of the chewing of khat leavesPharmacol Rev37149164PubMedGoogle Scholar
  21. Krsiak, M 1979Effects of drugs on behaviour of aggressive miceBr J Pharmacol65525533PubMedGoogle Scholar
  22. Leng, A, Feldon, J, Ferger, B 2004Long-term social isolation and medial prefrontal cortex: dopaminergic and cholinergic neurotransmissionPharmacol Biochem Behav77371379CrossRefPubMedGoogle Scholar
  23. Long, SF, Wilson, MC, Sufka, KJ, Davis, WM 1996The effects of cocaine and nandrolone co-administration on aggression in male ratsProg Neuropsychopharmacol Biol Psychiatry20839856CrossRefPubMedGoogle Scholar
  24. Maitai, CK, Dhadphale, M 1988Khat-induced paranoid psychosisBr J Psychiatry152294PubMedGoogle Scholar
  25. Matsumoto, K, Cai, B, Satoh, T, Ohta, H, Watanabe, H 1991Desipramine enhances isolation-induced aggressive behavior in micePharmacol Biochem Behav39167170CrossRefPubMedGoogle Scholar
  26. Mereu, GP, Pacitti, C, Argiolas, A 1983Effect of (−)-cathinone, a khat leaf constituent, on dopaminergic firing and dopamine metabolism in the rat brainLife Sci3213831389CrossRefPubMedGoogle Scholar
  27. Miachon, S, Rochet, T, Mathian, B, Barbagli, B, Claustrat, B 1993Long-term isolation of Wistar rats alters brain monoamine turnover, blood corticosterone, and ACTHBrain Res Bull32611614CrossRefPubMedGoogle Scholar
  28. Miczek, KA 1974Intraspecies aggression in rats: effects of d-amphetamine and chlordiazepoxidePsychopharmacologia39275301CrossRefPubMedGoogle Scholar
  29. Miczek, KA 1979A new test for aggression in rats without aversive stimulation: differential effects of d-amphetamine and cocainePsychopharmacology (Berl)60253259CrossRefGoogle Scholar
  30. Miczek KA, Fish EW (2005) Dopamine, glutamate and aggression. In: Schmidt WJ, Reith MEA (eds) Dopamine and glutamate in psychiatric disorders. Humana Press, Totowa, New Jeresey (in press)Google Scholar
  31. Miczek, KA, Haney, M 1994Psychomotor stimulant effects of d-amphetamine, MDMA and PCP: aggressive and schedule-controlled behavior in micePsychopharmacology (Berl)115358365CrossRefGoogle Scholar
  32. Miczek, KA, O’Donnell, JM 1978Intruder-evoked aggression in isolated and non isolated mice: effects of psychomotor stimulants and L-dopaPsychopharmacology (Berl)574755CrossRefGoogle Scholar
  33. Miczek, KA, Fish, EW, De Bold, JF, De Almeida, RM 2002Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systemsPsychopharmacology (Berl)163434458CrossRefGoogle Scholar
  34. Nielsen, JA 1985Cathinone affects dopamine and 5-hydroxytryptamine neurons in vivo as measured by changes in metabolites and synthesis in four forebrain regions in the ratNeuropharmacology24845852CrossRefPubMedGoogle Scholar
  35. Odenwald, M, Neuner, F, Schauer, M, Elbert, T, Catani, C, Lingenfelder, B, Hinkel, H, Hafner, H, Rockstroh, B 2005Khat use as risk factor for psychotic disorders: a cross-sectional and case-control study in SomaliaBMC Med35CrossRefPubMedGoogle Scholar
  36. Oliver B, Young LJ (2002) Animal models of aggression. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  37. Pehek, EA, Schechter, MD, Yamamoto, BK 1990Effects of cathinone and amphetamine on the neurochemistry of dopamine in vivoNeuropharmacology2911711176CrossRefPubMedGoogle Scholar
  38. Rilke, O, Freier, D, Jahkel, M, Oehler, J 1998Dynamic alterations of serotonergic metabolism and receptors during social isolation of low- and high-active micePharmacol Biochem Behav59891896CrossRefPubMedGoogle Scholar
  39. Robinson, TE, Becker, JB 1986Enduring changes in brain and behaviour produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosisBrain Res11157198CrossRefGoogle Scholar
  40. Rothman, RB, Vu, N, Partilla, JS, Roth, BL, Hufeisen, SJ, Compton-Toth, BA, Birkes, J, Young, R, Glennon, RA 2003In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substratesJ Pharmacol Exp Ther307138145CrossRefPubMedGoogle Scholar
  41. Schechter, MD 1990Dopaminergic nature of acute cathine tolerancePharmacol Biochem Behav36817820CrossRefPubMedGoogle Scholar
  42. Schenk, S, Hunt, T, Malovechko, R, Robertson, A, Klukowski, G, Amit, Z 1986Differential effects of isolation housing on the conditioned place preference produced by cocaine and amphetaminePharmacol Biochem Behav2417931796CrossRefPubMedGoogle Scholar
  43. Siegel, A, Roeling, TA, Gregg, TR, Kruk, MR 1999Neuropharmacology of brain-stimulation-evoked aggressionNeurosci Biobehav Rev23359389CrossRefPubMedGoogle Scholar
  44. Sokolov, BP, Schindler, CW, Cadet, JL 2004Chronic methamphetamine increases fighting in micePharmacol Biochem Behav77319326CrossRefPubMedGoogle Scholar
  45. Valzelli, L 1967Drugs and aggressivenessAdv Pharmacol579108PubMedCrossRefGoogle Scholar
  46. Valzelli, L 1978Human and animal studies on the neurophysiology of aggressionProg Neuropsychopharmacol2591610CrossRefGoogle Scholar
  47. White, SM, Kucharik, RF, Moyer, JA 1991Effects of serotonergic agents on isolation-induced aggressionPharmacol Biochem Behav39729736CrossRefPubMedGoogle Scholar
  48. Zelger, JL, Schorno, HX, Carkini, EA 1980Behavioural effects of cathinone, an amine obtained from Catha edulis forsk: comparisons with amphetamine, norpseudoephedrine, apomorphine and nomifensineBull Narc326781PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. Y. Banjaw
    • 1
  • K. Miczek
    • 2
  • W. J. Schmidt
    • 1
  1. 1.Department of NeuropharmacologyZoological Institute, Faculty of Biology, University of TuebingenTuebingenGermany
  2. 2.Department of Psychology, Psychiatry, and NeuroscienceTufts UniversityMedfordUSA

Personalised recommendations