Advertisement

Quantitative anatomical comparison of transnasal and transcranial approaches to the clivus

  • Edoardo Agosti
  • Giorgio Saraceno
  • Jimmy Qiu
  • Barbara Buffoli
  • Marco Ferrari
  • Elena Raffetti
  • Francesco Belotti
  • Marco Ravanelli
  • Davide Mattavelli
  • Alberto Schreiber
  • Lena Hirtler
  • Luigi F. Rodella
  • Roberto Maroldi
  • Piero Nicolai
  • Fred Gentili
  • Walter Kucharczyk
  • Marco M. Fontanella
  • Francesco DogliettoEmail author
Original Article - Neurosurgical Anatomy
  • 20 Downloads
Part of the following topical collections:
  1. Neurosurgical anatomy

Abstract

Background and objective

The clivus was defined as “no man’s land” in the early 1990s, but since then, multiple approaches have been described to access it. This study is aimed at quantitatively comparing endoscopic transnasal and microsurgical transcranial approaches to the clivus in a preclinical setting, using a recently developed research method.

Methods

Multiple approaches were performed in 5 head and neck specimens that underwent high-resolution computed tomography (CT): endoscopic transnasal (transclival, with hypophysiopexy and with far-medial extension), microsurgical anterolateral (supraorbital, mini-pterional, pterional, pterional transzygomatic, fronto-temporal-orbito-zygomatic), lateral (subtemporal and subtemporal transzygomatic), and posterolateral (retrosigmoid, far-lateral, retrolabyrinthine, translabyrinthine, and transcochlear). An optic neuronavigation system and dedicated software were used to quantify the working volume of each approach and calculate the exposure of different clival regions. Mixed linear models with random intersections were used for statistical analyses.

Results

Endoscopic transnasal approaches showed higher working volume and larger exposure compared with microsurgical transcranial approaches. Increased exposure of the upper clivus was achieved by the transnasal endoscopic transclival approach with intradural hypophysiopexy. Anterolateral microsurgical transcranial approaches provided a direct route to the anterior surface of the posterior clinoid process. The transnasal endoscopic approach with far-medial extension ensured a statistically larger exposure of jugular tubercles as compared with other approaches. Presigmoid approaches provided a relatively limited exposure of the ipsilateral clivus, which increased in proportion to their invasiveness.

Conclusions

This is the first anatomical study that quantitatively compares in a holistic way exposure and working volumes offered by the most used modern approaches to the clivus.

Keywords

Clivus Comparative study Endoscopy Microsurgery Quantitative study Skull base surgery 

Abbreviations

CSF

cerebrospinal fluid

CT

computed tomography

DICOM

Digital Imaging and Communications in Medicine

ETCA

endoscopic transnasal transclival approach

ETCAs

endoscopic transnasal transclival approaches

ETCAFM

ETCA with far-medial extension

ETCAH

ETCA with intradural hypophysiopexy approach

FL

Far-lateral approach

FTOZ

Fronto-temporal-orbito-zygomatic approach

GTx-Eyes II – UHN

Guided Therapeutics software developed at University Health Network – Toronto, Canada

IDEAL

Innovation Development Exploration Assessment Long term

IACs

internal acoustic canals

MPT

mini-pterional approach

MTCAs

microsurgical transcranial approaches

PT

pterional approach

PTTZ

pterional transzygomatic approach

SO

supraorbital approach

RL

presigmoid retrolabyrinthine infratentorial approach

RS

retrosigmoid approach

ST

subtemporal approach

STTZ

subtemporal transzygomatic approach

TC

presigmoid transcochlear infratentorial approach

TL

presigmoid translabyrinthine infratentorial approach

Notes

Acknowledgments

We thank Prof. R. Rezzani, Ph.D., Head of the Section of Anatomy and Pathophysiology of Brescia, for study support, Prof. Giuseppe Lanzino, M.D., for study supervision, and Elisa Colombo, M.S., for her guidance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals and informed consent

This work was performed according to the ethical standards of our Institutional Review Board. All human cadaveric studies have been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. The manuscript does not contain clinical studies or patient data.

Supplementary material

701_2019_4152_MOESM1_ESM.docx (2 mb)
ESM 1 (DOCX 2.03 MB)

References

  1. 1.
    Beer-Furlan A, Abi-Hachem R, Jamshidi AO, Carrau RL, Prevedello DM (2016) Endoscopic trans-sphenoidal surgery for petroclival and clival meningiomas. J Neurosurg Sci 60:495–502PubMedGoogle Scholar
  2. 2.
    Belotti F, Doglietto F, Schreiber A et al (2018) Modular classification of endoscopic endonasal transsphenoidal approaches to sellar region: anatomic quantitative study. World Neurosurg. 109:281–291CrossRefGoogle Scholar
  3. 3.
    Belotti F, Tengattini F, Mattavelli D, Ferrari M, Fiorentino A, Agnelli S, Buffoli B, Schreiber A, Maroldi R, Rodella L, Nicolai P, Fontanella MM, Doglietto F (2019) Transclival approaches for intradural pathology: Historical overview and present scenario. Neurosurgical Review (submitted)Google Scholar
  4. 4.
    Beltrán-Giner A, Miranda-Lloret P, Plaza-Ramirez E, Simal-Julián J-A, Botella-Asunción C (2013) Full endoscopic endonasal extreme far-medial approach: eustachian tube transposition. J Neurosurg Pediatr 11:584–590PubMedCrossRefGoogle Scholar
  5. 5.
    Campero A, Campero AA, Socolovsky M, Martins C, Yasuda A, Basso A, Rhoton A (2010) The transzygomatic approach. J Clin Neurosci 17:1428–1433PubMedCrossRefGoogle Scholar
  6. 6.
    Cook JA, McCulloch P, Blazeby JM, Beard DJ, Marinac-Dabic D, Sedrakyan A, IDEAL Group (2013) IDEAL framework for surgical innovation 3: randomised controlled trials in the assessment stage and evaluations in the long term study stage. BMJ. 346:2820CrossRefGoogle Scholar
  7. 7.
    Daly MJ, Chan H, Nithiananthan S, Qiu J, Barker E, Bachar G, Dixon BJ, Irish JC, Siewerdsen JH (2011) Clinical implementation of intraoperative cone-beam CT in head and neck surgery. Proc. SPIE 7964, Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling, 796426 (1 March 2011);  https://doi.org/10.1117/12.878976
  8. 8.
    De Arnaldo Silva Vellutini E, Balsalobre L, Hermann DR, Stamm AC (2014) The endoscopic endonasal approach for extradural and intradural clivus lesions. World Neurosurg. 82:106–115CrossRefGoogle Scholar
  9. 9.
    De Notaris M, Cavallo LM, Prats-Galino A, Esposito I, Benet A, Poblete J, Valente V, Gonzalez JB, Ferrer E, Cappabianca P (2009) Endoscopic endonasal transclival approach and retrosigmoid approach to the clival and petroclival regions. Neurosurgery. 65:42–50PubMedPubMedCentralGoogle Scholar
  10. 10.
    Doglietto F, Belotti F, Qiu J et al (2019) Endonasal and transoral approaches to the craniovertebral junction: a quantitative anatomical study. Acta Neurochir Suppl 125:37–44PubMedCrossRefGoogle Scholar
  11. 11.
    Doglietto F, Ferrari M, Mattavelli D et al (2018) Transnasal endoscopic and lateral approaches to the clivus: a quantitative anatomic study. World Neurosurg 113:659–671CrossRefGoogle Scholar
  12. 12.
    Dolenc VV (1994) Frontotemporal epidural approach to trigeminal neurinomas. Acta Neurochir 130:55–65PubMedCrossRefGoogle Scholar
  13. 13.
    Ergina PL, Barkun JS, McCulloch P, Cook JA, Altman DG, IDEAL Group (2013) IDEAL framework for surgical innovation 2: observational studies in the exploration and assessment stages. BMJ. 346:3011CrossRefGoogle Scholar
  14. 14.
    Ferrari M, Schreiber A, Mattavelli D et al (2016) The inferolateral transorbital endoscopic approach: a preclinical anatomic study. World Neurosurg. 90:403–413PubMedCrossRefGoogle Scholar
  15. 15.
    Ferrari M, Schreiber A, Mattavelli D, Lombardi D, Rampinelli V, Doglietto F, Rodella LF, Nicolai P (2018) Surgical anatomy of the parapharyngeal space: a multiperspective, quantification-based study. Head Neck 41:642–656PubMedCrossRefGoogle Scholar
  16. 16.
    Figueiredo EG, Deshmukh P, Nakaji P, Crusius MU, Crawford N, Spetzler RF, Preul MC (2007) The minipterional craniotomy: technical description and anatomic assessment. Neurosurgery. 61:256–264PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gardner PA, Vaz-Guimaraes F, Jankowitz B, Koutourousiou M, Fernandez-Miranda JC, Wang EW, Snyderman CH (2015) Endoscopic endonasal clipping of intracranial aneurysms: surgical technique and results. World Neurosurg. 84:1380–1393PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Gruss CL, Al Komser M, Aghi MK, Pletcher SD, Goldberg AN, McDermott M, El-Sayed IH (2014) Risk factors for cerebrospinal leak after endoscopic skull base reconstruction with nasoseptal flap. Otolaryngol Head Neck Surg (United States) 151:516–521CrossRefGoogle Scholar
  19. 19.
    Hadad G, Bassagasteguy L, Carrau RL, Mataza JC, Kassam A, Snyderman CH, Mintz A (2006) A novel reconstructive technique after endoscopic expanded endonasal approaches: vascular pedicle nasoseptal flap. Laryngoscope. 116:1882–1886PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jägersberg M, Brodard J, Qiu J, Mansouri A, Doglietto F, Gentili F, Kucharczyk W, Fasel J, Schaller K, Radovanovic I (2017) Quantification of working volumes, exposure, and target-specific maneuverability of the pterional craniotomy and its minimally invasive variants. World Neurosurg 101:710–717PubMedCrossRefGoogle Scholar
  21. 21.
    Kamat A, Lee JYK, Goldstein GH, Newman JG, Storm PB, Palmer JN, Adappa ND (2015) Reconstructive challenges in the extended endoscopic transclival approach. J Laryngol Otol 129:468–472PubMedCrossRefGoogle Scholar
  22. 22.
    Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL (2005) Expanded endonasal approach: the rostrocaudal axis. Part I. Crista galli to the sella turcica. Neurosurg Focus 19:3Google Scholar
  23. 23.
    Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL (2008) Expanded endonasal approach: the rostrocaudal axis. Part II. Posterior clinoids to the foramen magnum. Neurosurg Focus 19:4Google Scholar
  24. 24.
    Kassam AB, Gardner P, Snyderman C, Mintz A, Carrau R (2005) Expanded endonasal approach: fully endoscopic, completely transnasal approach to the middle third of the clivus, petrous bone, middle cranial fossa, and infratemporal fossa. Neurosurg Focus 19:6Google Scholar
  25. 25.
    Kassam AB, Prevedello DM, Carrau RRL et al (2011) Endoscopic endonasal skull base surgery: analysis of complications in the authors’ initial 800 patients. J Neurosurg 144:1544–1568CrossRefGoogle Scholar
  26. 26.
    Kassam AB, Prevedello DM, Thomas A, Gardner P, Mintz A, Snyderman C, Carrau R (2008) Endoscopic endonasal pituitary transposition for a transdorsum sellae approach to the interpeduncular cistern. Neurosurgery. 62:57–72PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim YH, Jeon C, Se Y-B et al (2017) Clinical outcomes of an endoscopic transclival and transpetrosal approach for primary skull base malignancies involving the clivus. J Neurosurg 128:1454–1462PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Koutourousiou M, Fernandez-Miranda JC, Vaz-Guimaraes Filho F, de Almeida JR, Wang EW, Snyderman CH, Gardner PA (2017) Outcomes of Endonasal and lateral approaches to Petroclival Meningiomas. World Neurosurg. 99:500–517PubMedCrossRefGoogle Scholar
  29. 29.
    Mangussi-Gomes J, Beer-Furlan A, Balsalobre L, Vellutini EAS, Stamm AC (2016) Endoscopic endonasal management of skull base chordomas: surgical technique, nuances, and pitfalls. Otolaryngol Clin N Am 49:167–182CrossRefGoogle Scholar
  30. 30.
    McCulloch P, Altman DG, Campbell WB, Flum DR, Glasziou P, Marshall JC, Nicholl J (2009) No surgical innovation without evaluation: the IDEAL recommendations. Lancet. 374:1105–1112PubMedCrossRefGoogle Scholar
  31. 31.
    Mesquita Filho PM, Ditzel Filho LFS, Prevedello DM, Martinez CAN, Fiore ME, Dolci RLL, Otto BA, Carrau RL (2014) Endoscopic endonasal surgical management of chondrosarcomas with cerebellopontine angle extension. Neurosurg Focus 37:13CrossRefGoogle Scholar
  32. 32.
    Morera VA, Fernandez-Miranda JC, Prevedello DM, Madhok R, Barges-Coll J, Gardner P, Carrau R, Snyderman CH, Rhoton AL, Kassam AB (2010) “Far-medial” expanded endonasal approach to the inferior third of the clivus: the transcondylar and transjugular tubercle approaches. Neurosurgery. 66:211–220PubMedGoogle Scholar
  33. 33.
    Nutik SL (1998) Pterional craniotomy via a transcavernous approach for the treatment of low-lying distal basilar artery aneurysms. J Neurosurg 89:921–926PubMedCrossRefGoogle Scholar
  34. 34.
    Perneczky A (1999) Key-hole concept in neurosurgery. Springer-Verlag, Vienna, pp 37–95Google Scholar
  35. 35.
    Qiu J, Radovanovic I, Gentili F, Ravichandiran M, Doglietto F, Fontanella MM, Zadeh G, Kucharczyk W, Belotti F, Agur A (2017) Quantitative comparison of cranial approaches in the anatomy laboratory: a neuronavigation based research method. World J Methodol 7:139–147PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rhoton J (2000) The far-lateral approach and its transcondylar, supracondylar, and paracondylar extensions. Neurosurgery. 47:195–209CrossRefGoogle Scholar
  37. 37.
    Samii M, Knosp E (1992) Approaches to the clivus. Approaches to no man’s land. Springer-Verlag, Berlin Heidelberg, pp 1–6CrossRefGoogle Scholar
  38. 38.
    Schmidt R, Singh K (2010) Meshmixer: an interface for rapid mesh composition. ACM SIGGRAPH.  https://doi.org/10.1145/1837026.1837034
  39. 39.
    Schreiber A, Ferrari M, Rampinelli V, Doglietto F, Belotti F, Lancini D, Ravanelli M, Rodella LF, Fontanella MM, Nicolai P (2017) Modular endoscopic medial maxillectomies: quantitative analysis of surgical exposure in a preclinical setting. World Neurosurg. 100:44–55PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Sodhi HBS, Singla N, Gupta SK (2015) Posterior clinoid meningioma: a case report with discussion on terminology and surgical approach. Surg Neurol Int 6:21PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ustun ME, Buyukmumcu M, Ulku CH, Guney Ö, Salbacak A (2006) Transzygomatic-subtemporal approach for middle meningeal-to-P2 segment of the posterior cerebral artery bypass: an anatomical and technical study. Skull Base 16:39–44PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Van Furth WR, Agur AMR, Woolridge N, Cusimano MD (2006) The orbitozygomatic approach. Neurosurgery. 58:103–107Google Scholar
  43. 43.
    Vender JR (2013) Retrosigmoid approach. Oper Tech Otolaryngol Head Neck Surg 45:375–397Google Scholar
  44. 44.
    Wanibuchi M, Friedman AH, Fukushima T (2009) Photo atlas of skull base dissections. Thieme, Stuttgart, pp 268–288Google Scholar
  45. 45.
    Yasargil MG (1984) Microneurosurgery, vol 1. Thieme-Stratton, New York, pp 215–233Google Scholar
  46. 46.
    Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 31:1116–1128PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zwagerman NT, Wang EW, Shin SS, Chang YF, Fernandez-Miranda JC, Snyderman CH, Gardner PA (2018) Does lumbar drainage reduce postoperative cerebrospinal fluid leak after endoscopic endonasal skull base surgery? A prospective, randomized controlled trial. J Neurosurg 1:1–7Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Edoardo Agosti
    • 1
  • Giorgio Saraceno
    • 1
  • Jimmy Qiu
    • 2
  • Barbara Buffoli
    • 3
  • Marco Ferrari
    • 4
  • Elena Raffetti
    • 5
  • Francesco Belotti
    • 1
  • Marco Ravanelli
    • 6
  • Davide Mattavelli
    • 4
  • Alberto Schreiber
    • 4
  • Lena Hirtler
    • 7
  • Luigi F. Rodella
    • 3
  • Roberto Maroldi
    • 6
  • Piero Nicolai
    • 4
  • Fred Gentili
    • 8
  • Walter Kucharczyk
    • 9
  • Marco M. Fontanella
    • 1
  • Francesco Doglietto
    • 1
    Email author
  1. 1.Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of BresciaBresciaItaly
  2. 2.TECHNA InstituteUniversity Health NetworkTorontoCanada
  3. 3.Section of Anatomy and Physiopathology, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
  4. 4.Otorhinolaryngology, Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
  5. 5.Department of Public Health Sciences, Karolinska InstituteStockholmSweden
  6. 6.Radiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of BresciaBresciaItaly
  7. 7.Division of Anatomy, Center for Anatomy and Cell BiologyMedical University of ViennaViennaAustria
  8. 8.Department of Neurosurgery, Toronto Western HospitalUniversity of TorontoTorontoCanada
  9. 9.Department of Medical ImagingUniversity of TorontoTorontoCanada

Personalised recommendations