Acta Neurochirurgica

, Volume 161, Issue 10, pp 2065–2071 | Cite as

Frame-based stereotactic biopsy of deep-seated and midline structures in 511 procedures: feasibility, risk profile, and diagnostic yield

  • Christina A. HamischEmail author
  • Jana Minartz
  • Tobias Blau
  • Vanessa Hafkemeyer
  • Daniel Rueß
  • Alexandra Hellerbach
  • Stefan J. Grau
  • Maximilian I. Ruge
Original Article - Brain Tumors
Part of the following topical collections:
  1. Brain tumors



We evaluated the feasibility, safety, and diagnostic yield of frame-based stereotactic biopsies (SB) in lesions located in deep-seated and midline structures of the brain to analyze these parameters in comparison to other brain areas.

Patients and methods

In a retrospective, tertiary care single-center analysis, we identified all patients who received SB for lesions localized in deep-seated and midline structures (corpus callosum, basal ganglia, pineal region, sella, thalamus, and brainstem) between January 1996 and June 2015. Study participants were between 1 and 82 years. We evaluated the feasibility, procedural complications (mortality, transient and permanent morbidity), and diagnostic yield. We further performed a risk analysis of factors influencing the latter parameters. Chi-square test, Student t test, and Mann-Whitney rank-sum test were used for statistical analysis.


Four hundred eighty-nine patients receiving 511 SB procedures (median age 48.5 years, range 1–82; median Karnofsky Performance Score 80%, range 50–100%, 43.8% female/56.2% male) were identified. Lesions were localized in the corpus callosum (29.5%), basal ganglia (17.0%), pineal region (11.5%), sella (7.8%), thalamus (4.3%), brainstem (28.8%), and others (1.1%). Procedure-related mortality was 0%, and permanent morbidity was 0.4%. Transient morbidity was 9.6%. Histological diagnosis was possible in 99.2% (low-grade gliomas 16.2%, high-grade gliomas 40.3%, other tumors in 27.8%, no neoplastic lesions 14.5%, no definitive histological diagnosis 0.8%). Only the pons location correlated significantly with transient morbidity (p < 0.001).


In experienced centers, frame-based stereotactic biopsy is a safe diagnostic tool with a high diagnostic yield also for deep-seated and midline lesions.


Stereotactic biopsy Midline structures Deep-seated structures Feasibility Safety Diagnostic yield 



CAH, JM, TB, VH, DR, and AH extracted the data. CAH, JM, SG, and MIR analyzed the data and wrote the manuscript. All authors read, revised, and approved the final version of the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This retrospective analysis was approved by the local ethical committee (reference numbers 16-476 and 16-477).

Patient consent for publication

Not required.


  1. 1.
    Baumert BG, Hegi ME, van den Bent MJ et al (2016) Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol 17(11):1521–1532CrossRefGoogle Scholar
  2. 2.
    Dammers R, Haitsma IK, Schouten JW et al (2008) Safety and efficacy of frameless and frame-based intracranial biopsy techniques. Acta Neurochir 150(1):23–29CrossRefGoogle Scholar
  3. 3.
    Felsberg J, Erkwoh A, Sabel MC et al (2004) Oligodendroglial tumors: refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival. Brain Pathol 14(2):121–130CrossRefGoogle Scholar
  4. 4.
    Georgiopoulos M, Ellul J, Chroni E et al (2018) Efficacy, safety and duration of a frameless fiducial-less brain biopsy versus frame-based stereotactic biopsy: a prospective randomized study. J Neurol Surg A Cent Eur Neurosurg 79(1):31–38CrossRefGoogle Scholar
  5. 5.
    Grasso CS, Tang Y, Truffaux N et al (2015) Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med 21:555–559CrossRefGoogle Scholar
  6. 6.
    Grossman R, Sadetzki S, Spiegelmann R et al (2005) Haemorrhagic complications and the incidence of asymptomatic bleeding associated with stereotactic brain biopsies. Acta Neurochir 147(6):627–631CrossRefGoogle Scholar
  7. 7.
    Hall WA (1998) The safety and efficacy of stereotactic biopsy for intracranial lesions. Cancer. 82(9):1749–1755CrossRefGoogle Scholar
  8. 8.
    Hamisch CA, Blau T, Klinger K et al (2017) Feasibility, risk profile and diagnostic yield of stereotactic biopsy in children and young adults with brain lesions. Klin Padiatr 229(3):133–141CrossRefGoogle Scholar
  9. 9.
    Hamisch C, Kickingereder P, Fischer M et al (2017) Update on the diagnostic value and safety of stereotactic biopsy for pediatric brainstem tumors: a systematic review and meta-analysis of 735 cases. JNS Pediatrics 20(3):261–268Google Scholar
  10. 10.
    Hartmann C, Hentschel B, Tatagiba M et al (2011) Molecular markers in low-grade gliomas: predictive or prognostic? Clin Cancer Res 17(13):4588–4599CrossRefGoogle Scholar
  11. 11.
    Hashizume R, Andor N, Ihara Y et al (2014) Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 20:1394–1396CrossRefGoogle Scholar
  12. 12.
    Khuong-Quang DA, Buczkowicz P, Rakopoulos P et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124:439–447CrossRefGoogle Scholar
  13. 13.
    Kickingereder P, Willeit P, Simon T et al (2013) Diagnostic value and safety of stereotactic biopsy for brainstem tumors: a systematic review and meta-analysis of 1480 cases. Neurosurgery. 72:873–882CrossRefGoogle Scholar
  14. 14.
    Kongkham PN, Knifed E, Tamber MS et al (2008) Complications in 622 cases of frame-based stereotactic biopsy, a decreasing procedure. Can J Neurol Sci 35:79–84CrossRefGoogle Scholar
  15. 15.
    Kreth FW, Muacevic A, Medele R et al (2001) The risk of haemorrhage after image guided stereotactic biopsy of intra-axial brain tumours--a prospective study. Acta Neurochir 143(6):539–545CrossRefGoogle Scholar
  16. 16.
    Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820CrossRefGoogle Scholar
  17. 17.
    Malone H, Yang J, Hershman DL et al (2015) Complications following stereotactic needle biopsy of intracranial tumors. World Neurosurg 84(4):1084–1089CrossRefGoogle Scholar
  18. 18.
    Marcus HJ, Vakharia VN, Ourselin S et al (2018) Robot-assisted stereotactic brain biopsy: systematic review and bibliometric analysis. Childs Nerv Syst 34:1299–1309CrossRefGoogle Scholar
  19. 19.
    McGirt MJ, Woodworth GF, Coon AL et al (2005) Independent predictors of morbidity after image-guided stereotactic brain biopsy: a risk assessment of 270 cases. J Neurosurg 102(5):897–901CrossRefGoogle Scholar
  20. 20.
    Nishihara M, Sasayama T, Kudo H et al (2011) Morbidity of stereotactic biopsy for intracranial lesions. Kobe J Med Sci 56(4):E148–E153Google Scholar
  21. 21.
    Nishihara M, Takeda N, Harada T et al (2014) Diagnostic yield and morbidity by neuronavigation-guided frameless stereotactic biopsy using magnetic resonance imaging and by frame-based computed tomography-guided stereotactic biopsy. Surg Neurol Int 5(Suppl 8):421–426CrossRefGoogle Scholar
  22. 22.
    Puget S, Beccaria K, Blauwblomme T et al (2015) Biopsy in a series of 130 pediatric diffuse intrinsic pontine gliomas. Childs Nerv Syst 31:1773–1780CrossRefGoogle Scholar
  23. 23.
    Rajshekar V, Moorthy RK (2001) Current status of stereotactic biopsy. Stereotact Funct Neurosurg 76:137–139CrossRefGoogle Scholar
  24. 24.
    Reithmeier T, Lopez WO, Doostkam S et al (2013) Intraindividual comparison of histopathological diagnosis obtained by stereotactic serial biopsy to open surgical resection specimen in patients with intracranial tumours. Clin Neurol Neurosurg 115(10):1955–1960CrossRefGoogle Scholar
  25. 25.
    Sawin PD, Hitchon PW, Follett KA et al (1998) Computed imaging-assisted stere otactic brain biopsy: a risk analysis of 225 consecutive cases. Surg Neuro l49(6):640–649CrossRefGoogle Scholar
  26. 26.
    Schaer RT, Fiechter M, Z’Graggen WJ et al (2016) No routine postoperative head CT following elective craniotomy - a paradigm shift? PLoS One 11(4):e0153499CrossRefGoogle Scholar
  27. 27.
    Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 482:226–231CrossRefGoogle Scholar
  28. 28.
    Soo TM, Bernstein M, Provias J et al (1995) Failed stereotactic biopsy in a series of 518 cases. Stereotact Funct Neurosurg 64(4):183–196Google Scholar
  29. 29.
    Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466CrossRefGoogle Scholar
  30. 30.
    van den Bent MJ, Dubbink HJ, Sanson M et al (2009) MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors: a report from EORTC Brain Tumor Group Study 26951. J Clin Oncol 27(35):5881–5886CrossRefGoogle Scholar
  31. 31.
    Voges J, Schröder R, Treuer H et al (1993) CT-guided and computer assisted stereotactic biopsy. Technique, results, indications. Acta Neurochir 125(1–4):142–149CrossRefGoogle Scholar
  32. 32.
    Wen DY, Hall WA, Miller DA et al (1993) Targeted brain biopsy: a comparison of freehand computed tomography-guided and stereotactic techniques. Neurosurgery. 32(3):407–412CrossRefGoogle Scholar
  33. 33.
    Wick W, Roth P, Hartmann C et al (2016) Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro-Oncology 18(11):1529–1537Google Scholar
  34. 34.
    Woodworth GF, McGirt MJ, Samdani A et al (2006) Frameless image-guided stereotactic brain biopsy procedure: diagnostic yield, surgical morbidity, and comparison with the frame-based technique. J Neurosurg 104(2):233–237CrossRefGoogle Scholar
  35. 35.
    Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Christina A. Hamisch
    • 1
    Email author
  • Jana Minartz
    • 2
  • Tobias Blau
    • 3
  • Vanessa Hafkemeyer
    • 2
  • Daniel Rueß
    • 2
  • Alexandra Hellerbach
    • 2
  • Stefan J. Grau
    • 1
    • 4
  • Maximilian I. Ruge
    • 2
    • 4
  1. 1.Department of General Neurosurgery, Center for NeurosurgeryUniversity Hospital of CologneCologneGermany
  2. 2.Department of Stereotaxy and Functional Neurosurgery, Center for NeurosurgeryUniversity Hospital of CologneKölnGermany
  3. 3.Department of NeuropathologyUniversity Hospital of EssenEssenGermany
  4. 4.Center of Integrated Oncology (CIO)Universities of Cologne and BonnBonnGermany

Personalised recommendations