Acta Neurochirurgica

, Volume 161, Issue 10, pp 2049–2058 | Cite as

Predictive potential of preoperative electroencephalogram for neuropsychological change following subthalamic nucleus deep brain stimulation in Parkinson’s disease

  • Maidinamu Yakufujiang
  • Yoshinori HiguchiEmail author
  • Kyoko Aoyagi
  • Tatsuya Yamamoto
  • Midori Abe
  • Yoji Okahara
  • Masaki Izumi
  • Osamu Nagano
  • Yoshitaka Yamanaka
  • Shigeki Hirano
  • Akihiro Shiina
  • Atsushi Murata
  • Yasuo Iwadate
Original Article - Functional Neurosurgery - Movement disorders
Part of the following topical collections:
  1. Functional Neurosurgery – Movement disorders



Deep brain stimulation of the bilateral subthalamic nucleus (STN-DBS) improves motor fluctuation and severe dyskinesia in advanced Parkinson’s disease (PD). Effects on non-motor symptoms, such as neurocognitive side effects, can also influence the quality of life of both patients with PD and caregivers. Predictive quantitative factors associated with postoperative neurocognitive deterioration therefore warrant further attention. Here, we evaluated preoperative electroencephalogram (EEG) as a predictive marker for changes in neurocognitive functions after surgery.


Scalp EEG was recorded preoperatively from 17 patients with PD who underwent bilateral STN-DBS. Global relative power in the theta, alpha, and beta bands was calculated. Cognitive function was assessed with neuropsychological batteries preoperatively and 1 year after STN-DBS.


Performance on the Symbol Search subtest of the WAIS III declined 1 year after DBS. The theta band was chosen for analysis with a 40% cutoff point for increased (≥ 40%) and decreased (< 40%) power. No significant differences between the two groups in baseline performance on most neuropsychological batteries were found, except for the Digit Symbol Coding subtest of the WAIS III. Changes in visual spatial functions were significantly different between groups. The increased theta band power group demonstrated a significant deterioration in performance on the WAIS III Matrix Reasoning subtest and the copy and immediate recall tasks of the Rey-Osterrieth complex figure test.


These findings suggest that preoperative increases in theta power are related to postoperative deterioration of visuospatial function, which indicates the predictive potential of preoperative quantitative EEG for neurocognitive changes after STN-DBS.


Deep brain stimulation Parkinson’s disease Subthalamic nucleus Neurocognitive function Visuospatial function 



This research was partially supported by Grant-in-Aid for Scientific Research <KAKENHI> (C, 17K10885).

Compliance with ethical standards

Conflict of interest

Maidinamu Yakufujiang, Yoshinori Higuchi, Kyoko Aoyagi, Tatsuya Yamamoto, Midori Abe, Yoji Okahara, Masaki Izumi, Osamu Nagano, Yoshitaka Yamanaka, Akihiro Shiina, Atsushi Murata, and Yasuo Iwadate declare that they have no conflict of interest. Shigeki Hirano has received research grants from Eli Lilly Japan.

Research involving human participants and/or animals

This article does not contain any studies with animals performed by any of the authors.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (the Ethics Committee of Chiba University Graduate School of Medicine) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Acera M, Molano A, Tijero B, Bilbao G, Lambarri I, Villoria R, Somme J, Ruiz de Gopegui E, Gabilondo I, Gomez-Esteban JC (2017) Long-term impact of subthalamic stimulation on cognitive function in patients with advanced Parkinson’s disease. Neurologia.
  2. 2.
    Alegret M, Junque C, Valldeoriola F, Vendrell P, Pilleri M, Rumia J, Tolosa E (2001) Effects of bilateral subthalamic stimulation on cognitive function in Parkinson disease. Arch Neurol 58:1223–1227CrossRefGoogle Scholar
  3. 3.
    Andrade-Souza YM, Schwalb JM, Hamani C, Eltahawy H, Hoque T, Saint-Cyr J, Lozano AM (2005) Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson’s disease. Neurosurgery 56:360–368 discussion 360-368CrossRefGoogle Scholar
  4. 4.
    Arbuthnott K, Frank J (2000) Trail making test, part B as a measure of executive control: validation using a set-switching paradigm. J Clin Exp Neuropsychol 22:518–528.;1-0;FT518 CrossRefGoogle Scholar
  5. 5.
    Aybek S, Gronchi-Perrin A, Berney A, Chiuve SC, Villemure JG, Burkhard PR, Vingerhoets FJ (2007) Long-term cognitive profile and incidence of dementia after STN-DBS in Parkinson’s disease. Mov Disord 22:974–981. CrossRefGoogle Scholar
  6. 6.
    Burdick DJ, Cholerton B, Watson GS, Siderowf A, Trojanowski JQ, Weintraub D, Ritz B, Rhodes SL, Rausch R, Factor SA, Wood-Siverio C, Quinn JF, Chung KA, Srivatsal S, Edwards KL, Montine TJ, Zabetian CP, Leverenz JB (2014) People with Parkinson’s disease and normal MMSE score have a broad range of cognitive performance. Mov Disord 29:1258–1264. CrossRefGoogle Scholar
  7. 7.
    Cepeda NJ, Blackwell KA, Munakata Y (2013) Speed isn’t everything: complex processing speed measures mask individual differences and developmental changes in executive control. Dev Sci 16:269–286. CrossRefGoogle Scholar
  8. 8.
    Combs HL, Folley BS, Berry DT, Segerstrom SC, Han DY, Anderson-Mooney AJ, Walls BD, van Horne C (2015) Cognition and depression following deep brain stimulation of the subthalamic nucleus and Globus pallidus pars internus in Parkinson’s disease: a meta-analysis. Neuropsychol Rev 25:439–454. CrossRefGoogle Scholar
  9. 9.
    Cozac VV, Chaturvedi M, Hatz F, Meyer A, Fuhr P, Gschwandtner U (2016) Increase of EEG spectral theta power indicates higher risk of the development of severe cognitive decline in Parkinson’s disease after 3 years. Front Aging Neurosci 8:284. Google Scholar
  10. 10.
    Davis AS, Pierson EE (2012) The relationship between the WAIS-III digit symbol coding and executive functioning. Appl Neuropsychol Adult 19:192–197. CrossRefGoogle Scholar
  11. 11.
    Demeter G, Valalik I, Pajkossy P, Szollosi A, Lukacs A, Kemeny F, Racsmany M (2017) The effect of deep brain stimulation of the subthalamic nucleus on executive functions: impaired verbal fluency and intact updating, planning and conflict resolution in Parkinson's disease. Neurosci Lett 647:72–77. CrossRefGoogle Scholar
  12. 12.
    Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J, German Parkinson Study Group NS (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908. CrossRefGoogle Scholar
  13. 13.
    Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, Marks WJ Jr, Rothlind J, Sagher O, Moy C, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein JM, Stoner G, Starr PA, Simpson R, Baltuch G, De Salles A, Huang GD, Reda DJ, Group CSPS (2010) Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 362:2077–2091. CrossRefGoogle Scholar
  14. 14.
    Glascher J, Adolphs R, Damasio H, Bechara A, Rudrauf D, Calamia M, Paul LK, Tranel D (2012) Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proc Natl Acad Sci U S A 109:14681–14686. CrossRefGoogle Scholar
  15. 15.
    Jahanshahi M, Ardouin CM, Brown RG, Rothwell JC, Obeso J, Albanese A, Rodriguez-Oroz MC, Moro E, Benabid AL, Pollak P, Limousin-Dowsey P (2000) The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 123(Pt 6):1142–1154CrossRefGoogle Scholar
  16. 16.
    Kalbe E, Kessler J, Calabrese P, Smith R, Passmore AP, Brand M, Bullock R (2004) DemTect: a new, sensitive cognitive screening test to support the diagnosis of mild cognitive impairment and early dementia. Int J Geriatr Psychiatry 19:136–143. CrossRefGoogle Scholar
  17. 17.
    Kim HJ, Jeon BS, Paek SH, Lee KM, Kim JY, Lee JY, Kim HJ, Yun JY, Kim YE, Yang HJ, Ehm G (2014) Long-term cognitive outcome of bilateral subthalamic deep brain stimulation in Parkinson’s disease. J Neurol 261:1090–1096. CrossRefGoogle Scholar
  18. 18.
    Kishore A, Rao R, Krishnan S, Panikar D, Sarma G, Sivasanakaran MP, Sarma S (2010) Long-term stability of effects of subthalamic stimulation in Parkinson’s disease: Indian experience. Mov Disord 25:2438–2444. CrossRefGoogle Scholar
  19. 19.
    Klassen BT, Hentz JG, Shill HA, Driver-Dunckley E, Evidente VG, Sabbagh MN, Adler CH, Caviness JN (2011) Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology 77:118–124. CrossRefGoogle Scholar
  20. 20.
    Kreiner DS, Ryan JJ (2001) Memory and motor skill components of the WAIS-III digit symbol-coding subtest. Clin Neuropsychol 15:109–113. CrossRefGoogle Scholar
  21. 21.
    Mamikonyan E, Moberg PJ, Siderowf A, Duda JE, Have TT, Hurtig HI, Stern MB, Weintraub D (2009) Mild cognitive impairment is common in Parkinson’s disease patients with normal mini-mental state examination (MMSE) scores. Parkinsonism Relat Disord 15:226–231. CrossRefGoogle Scholar
  22. 22.
    Markser A, Maier F, Lewis CJ, Dembek TA, Pedrosa D, Eggers C, Timmermann L, Kalbe E, Fink GR, Burghaus L (2015) Deep brain stimulation and cognitive decline in Parkinson’s disease: the predictive value of electroencephalography. J Neurol 262:2275–2284. CrossRefGoogle Scholar
  23. 23.
    Martinez-Martinez AM, Aguilar OM, Acevedo-Triana CA (2017) Meta-analysis of the relationship between deep brain stimulation in patients with Parkinson’s disease and performance in evaluation tests for executive brain functions. Parkinsons Dis 2017:9641392. Google Scholar
  24. 24.
    Massano J, Garrett C (2012) Deep brain stimulation and cognitive decline in Parkinson’s disease: a clinical review. Front Neurol 3:66. Google Scholar
  25. 25.
    Mehanna R, Bajwa JA, Fernandez H, Wagle Shukla AA (2017) Cognitive impact of deep brain stimulation on Parkinson’s disease patients. Parkinsons Dis 2017:3085140. Google Scholar
  26. 26.
    Morita A, Kamei S, Mizutani T (2011) Relationship between slowing of the EEG and cognitive impairment in Parkinson disease. J Clin Neurophysiol 28:384–387. Google Scholar
  27. 27.
    Morrison CE, Borod JC, Perrine K, Beric A, Brin MF, Rezai A, Kelly P, Sterio D, Germano I, Weisz D, Olanow CW (2004) Neuropsychological functioning following bilateral subthalamic nucleus stimulation in Parkinson’s disease. Arch Clin Neuropsychol 19:165–181. CrossRefGoogle Scholar
  28. 28.
    Nantel J, McDonald JC, Tan S, Bronte-Stewart H (2012) Deficits in visuospatial processing contribute to quantitative measures of freezing of gait in Parkinson’s disease. Neuroscience 221:151–156. CrossRefGoogle Scholar
  29. 29.
    Nimura T, Nagamatsu KI, Ando T, Matsumoto A, Hisanaga K, Tominaga T (2017) An investigation into the effects and prognostic factors of cognitive decline following subthalamic nucleus stimulation in patients with Parkinson’s disease. J Clin Neurosci 44:164–168. CrossRefGoogle Scholar
  30. 30.
    Odekerken VJ, Boel JA, Geurtsen GJ, Schmand BA, Dekker IP, de Haan RJ, Schuurman PR, de Bie RM, Group NS (2015) Neuropsychological outcome after deep brain stimulation for Parkinson disease. Neurology 84:1355–1361. CrossRefGoogle Scholar
  31. 31.
    Oosterman JM, Scherder EJ (2006) Distinguishing between vascular dementia and Alzheimer’s disease by means of the WAIS: a meta-analysis. J Clin Exp Neuropsychol 28:1158–1175. CrossRefGoogle Scholar
  32. 32.
    Parsons TD, Rogers SA, Braaten AJ, Woods SP, Troster AI (2006) Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol 5:578–588. CrossRefGoogle Scholar
  33. 33.
    Rothlind JC, York MK, Carlson K, Luo P, Marks WJ Jr, Weaver FM, Stern M, Follett K, Reda D, Group CSPS (2015) Neuropsychological changes following deep brain stimulation surgery for Parkinson’s disease: comparisons of treatment at pallidal and subthalamic targets versus best medical therapy. J Neurol Neurosurg Psychiatry 86:622–629. CrossRefGoogle Scholar
  34. 34.
    Rouaud T, Dondaine T, Drapier S, Haegelen C, Lallement F, Peron J, Raoul S, Sauleau P, Verin M (2010) Pallidal stimulation in advanced Parkinson’s patients with contraindications for subthalamic stimulation. Mov Disord 25:1839–1846. CrossRefGoogle Scholar
  35. 35.
    Rughani A, Schwalb JM, Sidiropoulos C, Pilitsis J, Ramirez-Zamora A, Sweet JA, Mittal S, Espay AJ, Martinez JG, Abosch A, Eskandar E, Gross R, Alterman R, Hamani C (2018) Congress of neurological surgeons systematic review and evidence-based guideline on subthalamic nucleus and Globus pallidus internus deep brain stimulation for the treatment of patients with Parkinson's disease: executive summary. Neurosurgery 82:753–756. CrossRefGoogle Scholar
  36. 36.
    Saez-Zea C, Escamilla-Sevilla F, Katati MJ, Minguez-Castellanos A (2012) Cognitive effects of subthalamic nucleus stimulation in Parkinson’s disease: a controlled study. Eur Neurol 68:361–366. CrossRefGoogle Scholar
  37. 37.
    Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE (2000) Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 123(Pt 10):2091–2108CrossRefGoogle Scholar
  38. 38.
    Santangelo G, Vitale C, Picillo M, Moccia M, Cuoco S, Longo K, Pezzella D, di Grazia A, Erro R, Pellecchia MT, Amboni M, Trojano L, Barone P (2015) Mild cognitive impairment in newly diagnosed Parkinson’s disease: a longitudinal prospective study. Parkinsonism Relat Disord 21:1219–1226. CrossRefGoogle Scholar
  39. 39.
    Serizawa K, Kamei S, Morita A, Hara M, Mizutani T, Yoshihashi H, Yamaguchi M, Takeshita J, Hirayanagi K (2008) Comparison of quantitative EEGs between Parkinson disease and age-adjusted normal controls. J Clin Neurophysiol 25:361–366. CrossRefGoogle Scholar
  40. 40.
    Shin MS, Park SY, Park SR, Seol SH, Kwon JS (2006) Clinical and empirical applications of the Rey-Osterrieth complex figure test. Nat Protoc 1:892–899. CrossRefGoogle Scholar
  41. 41.
    Smeding HM, Speelman JD, Huizenga HM, Schuurman PR, Schmand B (2011) Predictors of cognitive and psychosocial outcome after STN DBS in Parkinson’s disease. J Neurol Neurosurg Psychiatry 82:754–760. CrossRefGoogle Scholar
  42. 42.
    Tippett WJ, Black SE (2008) Regional cerebral blood flow correlates of visuospatial tasks in Alzheimer’s disease. J Int Neuropsychol Soc 14:1034–1045. CrossRefGoogle Scholar
  43. 43.
    Toyokura M, Tanaka H, Furukawa T, Yamanouchi Y, Murakami K (1996) Normal aging effect on cognitive task performance of information-processing speed: analysis of paced auditory serial addition task and trial making test (in Japanese). Brain Science and Mental Disorders 7:401–409Google Scholar
  44. 44.
    Varjacic A, Mantini D, Demeyere N, Gillebert CR (2018) Neural signatures of trail making test performance: evidence from lesion-mapping and neuroimaging studies. Neuropsychologia 115:78–87. CrossRefGoogle Scholar
  45. 45.
    Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ Jr, Rothlind J, Sagher O, Reda D, Moy CS, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein J, Stoner G, Heemskerk J, Huang GD, Group CSPS (2009) Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 301:63–73. CrossRefGoogle Scholar
  46. 46.
    Weaver FM, Follett KA, Stern M, Luo P, Harris CL, Hur K, Marks WJ, Rothlind J, Sagher O, Moy C, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein JM, Stoner G, Starr PA, Simpson R, Baltuch G, De Salles A, Huang GD, Reda DJ, Grp CS (2012) Randomized trial of deep brain stimulation for Parkinson disease thirty-six-month outcomes. Neurology 79:55–65. CrossRefGoogle Scholar
  47. 47.
    Williams AE, Arzola GM, Strutt AM, Simpson R, Jankovic J, York MK (2011) Cognitive outcome and reliable change indices two years following bilateral subthalamic nucleus deep brain stimulation. Parkinsonism Relat Disord 17:321–327. CrossRefGoogle Scholar
  48. 48.
    Williams-Gray CH, Evans JR, Goris A, Foltynie T, Ban M, Robbins TW, Brayne C, Kolachana BS, Weinberger DR, Sawcer SJ, Barker RA (2009) The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain 132:2958–2969. CrossRefGoogle Scholar
  49. 49.
    Witt K, Daniels C, Reiff J, Krack P, Volkmann J, Pinsker MO, Krause M, Tronnier V, Kloss M, Schnitzler A, Wojtecki L, Botzel K, Danek A, Hilker R, Sturm V, Kupsch A, Karner E, Deuschl G (2008) Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol 7:605–614. CrossRefGoogle Scholar
  50. 50.
    Yamashita H (2007) A normative study of Rey-Osterrieth complex figure in normal Japanese adults: impact of age on copy and recall performances. Clinical Psychiatry 49:155–159Google Scholar
  51. 51.
    York MK, Dulay M, Macias A, Levin HS, Grossman R, Simpson R, Jankovic J (2008) Cognitive declines following bilateral subthalamic nucleus deep brain stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 79:789–795. CrossRefGoogle Scholar
  52. 52.
    Zadikoff C, Fox SH, Tang-Wai DF, Thomsen T, de Bie RM, Wadia P, Miyasaki J, Duff-Canning S, Lang AE, Marras C (2008) A comparison of the mini mental state exam to the Montreal cognitive assessment in identifying cognitive deficits in Parkinson’s disease. Mov Disord 23:297–299. CrossRefGoogle Scholar
  53. 53.
    Zangaglia R, Pasotti C, Mancini F, Servello D, Sinforiani E, Pacchetti C (2012) Deep brain stimulation and cognition in Parkinson’s disease: an eight-year follow-up study. Mov Disord 27:1192–1194. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Maidinamu Yakufujiang
    • 1
  • Yoshinori Higuchi
    • 1
    Email author
  • Kyoko Aoyagi
    • 1
    • 2
  • Tatsuya Yamamoto
    • 3
  • Midori Abe
    • 4
  • Yoji Okahara
    • 2
  • Masaki Izumi
    • 1
  • Osamu Nagano
    • 2
  • Yoshitaka Yamanaka
    • 3
  • Shigeki Hirano
    • 3
  • Akihiro Shiina
    • 5
  • Atsushi Murata
    • 4
  • Yasuo Iwadate
    • 1
  1. 1.Department of Neurological SurgeryChiba University Graduate School of MedicineChiba CityJapan
  2. 2.Department of NeurosurgeryChiba Cerebral and Cardiovascular CenterChibaJapan
  3. 3.Department of NeurologyChiba University Graduate School of MedicineChibaJapan
  4. 4.Department of Rehabilitation MedicineChiba University HospitalChibaJapan
  5. 5.Division of Medical Treatment and RehabilitationChiba University Center for Forensic Mental HealthChibaJapan

Personalised recommendations