Advertisement

Acta Neurochirurgica

, Volume 160, Issue 8, pp 1643–1652 | Cite as

Development of a statistical model for discrimination of rupture status in posterior communicating artery aneurysms

  • Felicitas J. Detmer
  • Bong Jae Chung
  • Fernando Mut
  • Michael Pritz
  • Martin Slawski
  • Farid Hamzei-Sichani
  • David Kallmes
  • Christopher Putman
  • Carlos Jimenez
  • Juan R. Cebral
Original Article - Vascular Neurosurgery - Aneurysm
  • 210 Downloads
Part of the following topical collections:
  1. Vascular Neurosurgery – Aneurysm

Abstract

Background

Intracranial aneurysms at the posterior communicating artery (PCOM) are known to have high rupture rates compared to other locations. We developed and internally validated a statistical model discriminating between ruptured and unruptured PCOM aneurysms based on hemodynamic and geometric parameters, angio-architectures, and patient age with the objective of its future use for aneurysm risk assessment.

Methods

A total of 289 PCOM aneurysms in 272 patients modeled with image-based computational fluid dynamics (CFD) were used to construct statistical models using logistic group lasso regression. These models were evaluated with respect to discrimination power and goodness of fit using tenfold nested cross-validation and a split-sample approach to mimic external validation.

Results

The final model retained maximum and minimum wall shear stress (WSS), mean parent artery WSS, maximum and minimum oscillatory shear index, shear concentration index, and aneurysm peak flow velocity, along with aneurysm height and width, bulge location, non-sphericity index, mean Gaussian curvature, angio-architecture type, and patient age. The corresponding area under the curve (AUC) was 0.8359. When omitting data from each of the three largest contributing hospitals in turn, and applying the corresponding model on the left-out data, the AUCs were 0.7507, 0.7081, and 0.5842, respectively.

Conclusions

Statistical models based on a combination of patient age, angio-architecture, hemodynamics, and geometric characteristics can discriminate between ruptured and unruptured PCOM aneurysms with an AUC of 84%. It is important to include data from different hospitals to create models of aneurysm rupture that are valid across hospital populations.

Keywords

Cerebral aneurysm Posterior communicating artery Hemodynamics Morphology Rupture Prediction 

Notes

Funding

This study was funded by the National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH-NINDS, grant no. R21NS094780).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Supplementary material

701_2018_3595_MOESM1_ESM.pdf (514 kb)
ESM 1 (PDF 514 kb)

References

  1. 1.
    Golshani K, Ferrell A, Zomorodi A, Smith TP, Britz GW (2010) A review of the management of posterior communicating artery aneurysms in the modern era. Surg Neurol Int 1:88CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Morita A, Kirino T, Hashi K, Aoki N, Fukuhara S, Hashimoto N, Nakayama T, Sakai M, Teramoto A, Tominari S, Yoshimoto T (2012) The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med 366:2474–2482CrossRefPubMedGoogle Scholar
  3. 3.
    Cebral JR, Raschi M (2013) Suggested connections between risk factors of intracranial aneurysms: a review. Ann Biomed Eng 41:1366–1383CrossRefPubMedGoogle Scholar
  4. 4.
    Weir B, Disney L, Karrison T (2002) Sizes of ruptured and unruptured aneurysms in relation to their sites and the ages of patients. J Neurosurg 96:64–70CrossRefPubMedGoogle Scholar
  5. 5.
    Greving JP, Wermer MJ, Brown RD, Morita A, Juvela S, Yonekura M, Ishibashi T, Torner JC, Nakayama T, Rinkel GJ, Algra A (2014) Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol 13:59–66CrossRefPubMedGoogle Scholar
  6. 6.
    Tominari S, Morita A, Ishibashi T, Yamazaki T, Takao H, Murayama Y, Sonobe M, Yonekura M, Saito N, Shiokawa Y, Date I, Tominaga T, Nozaki K, Houkin K, Miyamoto S, Kirino T, Hashi K, Nakayama T, for the Unruptured Cerebral Aneurysm Study Japan Investigators (2015) Prediction model for 3-year rupture risk of unruptured cerebral aneurysms in Japanese patients. Ann Neurol 77(6):1050–1059Google Scholar
  7. 7.
    Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H (2011) Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42:144–152CrossRefPubMedGoogle Scholar
  8. 8.
    Chung BJ, Doddasomayajula R, Mut F, Detmer F, Pritz MB, Hamzei-Sichani F, Brinjikji W, Kallmes DF, Jimenez C, Putman CM, Cebral JR (2017) Angio-architectures and hemodynamics characteristics of posterior communicating artery aneurysms and their association with rupture status. AJNR Am J Neuroradiol in press:Google Scholar
  9. 9.
    Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imag 24:457–467CrossRefGoogle Scholar
  10. 10.
    Ford MD, Alperin N, Lee SH, Holdsworth DW, Steinman DA (2005) Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol Meas 26:477–488CrossRefPubMedGoogle Scholar
  11. 11.
    Cebral JR, Castro MA, Putman CM, Alperin N (2008) Flow-area relationship in internal carotid and vertebral arteries. Physiol Meas 29:585–594CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comp Meth App Mech Eng 158:155–196CrossRefGoogle Scholar
  13. 13.
    Mut F, Aubry R, Löhner R, Cebral JR (2010) Fast numerical solutions of patient-specific blood flows in 3D arterial systems. Int J Num Meth Biomed Eng 26:73–85CrossRefGoogle Scholar
  14. 14.
    Byrne G, Mut F, Cebral JR (2014) Quantifying the large-scale hemodynamics of intracranial aneurysms. AJNR Am J Neuroradiol 35:333–338CrossRefPubMedGoogle Scholar
  15. 15.
    Ma B, Harbaugh RE, Raghavan ML (2004) Three-dimensional geometrical characterization of cerebral aneurysms. Ann Biomed Eng 32:264–273CrossRefPubMedGoogle Scholar
  16. 16.
    Mut F, Löhner R, Chien A, Tateshima S, Viñuela F, Putman CM, Cebral JR (2011) Computational hemodynamics framework for the analysis of cerebral aneurysms. Int J Num Meth Biomed Eng 27:822–839CrossRefGoogle Scholar
  17. 17.
    Raghavan ML, Ma B, Harbaugh RE (2005) Quantified aneurysm shape and rupture risk. J Neurosurg 102:355–362CrossRefPubMedGoogle Scholar
  18. 18.
    Meier L, van de Geer S, Buhlmann P (2008) The group lasso for logistic regression. J R Stat Soc Ser B Stat Methodol 70(1):53–71CrossRefGoogle Scholar
  19. 19.
    Bühlmann P, van de Geer S (2011) Statistics for high-dimensional data: methods, theory and applications. Springer, New YorkCrossRefGoogle Scholar
  20. 20.
    Simon N, Tibshirani R (2012) Standardization and the Group Lasso Penalty. Stat Sin.  https://doi.org/10.5705/ss.2011.075
  21. 21.
    Detmer FJ, Chung BJ, Mut F, Slawski M, Hamzei-Sichani F, Putman CM, Jimenez CM, Cebral JR Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics. Submitted ManuscriptGoogle Scholar
  22. 22.
    Steyerberg EW (2009) Clinical prediction models. Springer, New YorkCrossRefGoogle Scholar
  23. 23.
    Austin PC, Steyerberg EW (2014) Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Stat Med 33(3):517–535CrossRefPubMedGoogle Scholar
  24. 24.
    Varma S, Simon R (2006) Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 7(91)Google Scholar
  25. 25.
    Zhang Y, Jing L, Liu J, Li C, Fan J, Wang S, Li H, Yang X (2016) Clinical, morphological, and hemodynamic independent characteristic factors for rupture of posterior communicating artery aneurysms. J Neurointerv Surg 8:808–812CrossRefPubMedGoogle Scholar
  26. 26.
    Backes D, Rinkel GJE, Greving JP, Velthuis BK, Murayama Y, Takao H, Ishibashi T, Igase M, terBrugge KG, Agid R, Jääskeläinen JE, Lindgren AE, Koivisto T, von Und Zu Fraunberg M, Matsubara S, Moroi J, Wong GKC, Abrigo JM, Igase K, Matsumoto K, Wermer MJH, van Walderveen MAA, Algra A, Vergouwen MDI (2017) ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms. Neurology 88(17):1600–1606Google Scholar
  27. 27.
    Matsukawa H, Uemura A, Fujii M, Kamo M, Takahashi O, Sumiyoshi S (2013) Morphological and clinical risk factors for the rupture of anterior communicating artery aneurysms. J Neurosurg 118(5):978–983CrossRefPubMedGoogle Scholar
  28. 28.
    Wang G-X, Yu J-Y, Wen L, Zhang L, Mou K-J, Zhang D (2016) Risk factors for the rupture of middle cerebral artery bifurcation aneurysms using CT angiography. PLoS One 11(12):e0166654CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Juvela S, Poussa K, Lehto H, Porras M (2013) Natural history of unruptured intracranial aneurysms: a long-term follow-up study. Stroke 44:2414–2421CrossRefPubMedGoogle Scholar
  30. 30.
    Hamdan A, Barnes J, Mitchell P (2014) Subarachnoid hemorrhage and the female sex: analysis of risk factors, aneurysm characteristics, and outcomes: clinical article. J Neurosurg 121(6):1367–1373CrossRefPubMedGoogle Scholar
  31. 31.
    Wermer MJH, van der Schaaf IC, Algra A, Rinkel GJE (2007) Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke 38(4):1404–1410CrossRefPubMedGoogle Scholar
  32. 32.
    Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, Hopkins LN, Meng H (2008) Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63:185–197CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lv N, Wang C, Karmonik C, Fang Y, Xu J, Yu Y, Cao W, Liu J, Huang Q (2016) Morphological and hemodynamic discriminators for rupture status in posterior communicating artery aneurysms. PLoS One 11:e0149906CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Duan G, Lv N, Yin J, Xu J, Hong B, Xu Y, Liu J, Huang Q (2016) Morphological and hemodynamic analysis of posterior communicating artery aneurysms prone to rupture: a matched case-control study. J Neurointerventional Surg 8(1):47–51CrossRefGoogle Scholar
  35. 35.
    Huhtakangas J, Lehecka M, Lehto H, Jahromi BR, Niemelä M, Kivisaari R (2017) CTA analysis and assessment of morphological factors related to rupture in 413 posterior communicating artery aneurysms. Acta Neurochir.  https://doi.org/10.1007/s00701-017-3263-4
  36. 36.
    Xu J, Yu Y, Wu X, Wu Y, Jiang C, Wang S, Huang Q, Liu J (2013) Morphological and hemodynamic analysis of mirror posterior communicating artery aneurysms. PLoS One 8:se55413CrossRefGoogle Scholar
  37. 37.
    Collins GS, Reitsma JB, Altman DG, Moons KG (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMC Med 13(1):1CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Felicitas J. Detmer
    • 1
  • Bong Jae Chung
    • 1
  • Fernando Mut
    • 1
  • Michael Pritz
    • 1
    • 2
  • Martin Slawski
    • 3
  • Farid Hamzei-Sichani
    • 4
  • David Kallmes
    • 5
  • Christopher Putman
    • 6
  • Carlos Jimenez
    • 7
  • Juan R. Cebral
    • 1
  1. 1.Bioengineering Department, Volgenau School of EngineeringGeorge Mason UniversityFairfaxUSA
  2. 2.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  3. 3.Statistics DepartmentGeorge Mason UniversityFairfaxUSA
  4. 4.Department of Neurological SurgeryUniversity of MassachusettsWorcesterUSA
  5. 5.Department of RadiologyMayo ClinicRochesterUSA
  6. 6.Interventional Neuroradiology UnitInova Fairfax HospitalFalls ChurchUSA
  7. 7.Neurosurgery DepartmentUniversity of AntioquiaMedellinColombia

Personalised recommendations