Advertisement

Computing

pp 1–23 | Cite as

The role of collaborative tagging and ontologies in emerging semantic of web resources

  • Sara QassimiEmail author
  • El Hassan Abdelwahed
Article
  • 15 Downloads

Abstract

The social web interactions have extended the sharing and the growth of web resources on the web. The collaborative web services (folksonomies) enable users to assign their freely chosen keywords (tags) to describe web resources. The advent of folksonomy has evolved the role of web users from consumers to contributors of information. Thus, users attribute their descriptive tags to annotate, organize and classify web resources of interests. Folksonomy became popular with the emergence of collaborative tagging. It offers a practical classification of web resources via the attributed tags. Nonetheless, the freely chosen tags weaken the semantic description of web resources. Folksonomy can give rise to a poor classification system based on ambiguous and inconsistent tags. Therefore, it is essential to pertinently describe the semantic of web resources to enhance their classification, findability and discoverability. The proposed approach represents a combined semantic enrichment strategy that explores collaborative tagging towards describing each web resource using different types of descriptive metadata, namely relevant folksonomy tags, content-based main keywords and matching ontology terms. The experimental evaluation has shown relevant results attesting the efficiency of our proposal. The alignment of social tagging with the ontology will not only enhances the classification of web resources but also constructs their semantic clustering. This emergent semantic will establish new challenges to improve the context-aware recommender systems of web resources in different real-world applications (healthcare, social education and cultural heritage).

Keywords

Folksonomy Semantic web Ontology Web resource Emergent semantic Recommender system 

Notes

References

  1. 1.
    Baker M (2013) Every page is page one. XML Press. Laguna Hills. ISBN 978-1937434281Google Scholar
  2. 2.
    Kang J-H, Lerman K (2011) Leveraging user diversity to harvest knowledge on the social web. In: Proceedings of the IEEE third international conference on social computing (SocialCom)Google Scholar
  3. 3.
    Lau Raymond YK, Leon Zhao J, Wenping Z, Yi C, Ngai Eric WT (2015) Learning contect-sensitive domain ontologies from folksonomies: a cognitively motivated method. Inf J Comput 27:561–578zbMATHGoogle Scholar
  4. 4.
    Daglas S, Kakali C, Kakavoulis D, Koumaki M, Papatheodorou C (2012) A methodology for folksonomy evaluation. In: Zaphiris P, Buchanan G, Rasmussen E, Loizides F (eds) Theory and practice of digital libraries. Lecture notes in computer science, vol 7489. Springer, BerlinGoogle Scholar
  5. 5.
    Kumar KPK, Srivastava A, Geethakumari G (2016) A psychometric analysis of information propagation in online social networks using latent trait theory. Computing 98:583.  https://doi.org/10.1007/s00607-015-0472-7 MathSciNetGoogle Scholar
  6. 6.
    Feicheng M, Yating L (2014) Utilising social network analysis to study the characteristics and functions of the co-occurrence network of online tags. Online Inf Rev 38(2):232–247Google Scholar
  7. 7.
    Khan Minhas MF, Abbasi RA, Aljohani NR, Albeshri AA, Mushtaq M (2015) Intweems: a framework for incremental clustering of tweet streams. In: Proceedings of the 17th international conference on information integration and web-based applications and services, iiWAS 15. ACM, New York, NY, USA, pp 87:1–87:4Google Scholar
  8. 8.
    Godoy D, Corbellini A (2016) Folksonomy-based recommender systems: a state-of-the-art review. Int J Intell Syst 31(4):314–346.  https://doi.org/10.1002/int.21753 Google Scholar
  9. 9.
    Abbas A, Zhang L, Khan SU (2015) A survey on context-aware recommender systems based on computational intelligence techniques. Computing 97(7):667–690MathSciNetGoogle Scholar
  10. 10.
    Sanchez Bocanegra CL, Sevillano Ramos JL, Rizo C, Civit A, Fernandez-Luque L (2017) HealthRecSys: a semantic content-based recommender system to complement health videos. BMC Med Inform Decis Mak 17:63.  https://doi.org/10.1186/s12911-017-0431-7 Google Scholar
  11. 11.
    Klašnja-Milićević A, Ivanović M, Vesin B et al (2017) Enhancing e-learning systems with personalized recommendation based on collaborative tagging techniques. Appl Intell.  https://doi.org/10.1007/s10489-017-1051-8
  12. 12.
    Bao J, Zheng Y, Wilkie D et al (2015) Recommendations in location-based social networks: a survey. Geoinformatica 19:525.  https://doi.org/10.1007/s10707-014-0220-8 Google Scholar
  13. 13.
    Qassimi S, Abdelwahed EH, Hafidi M, Lamrani R (2017) Towards an emergent semantic of web resources using collaborative tagging. In: Ouhammou Y, Ivanovic M, Abelló A, Bellatreche L (eds) Model and data engineering. MEDI 2017. Lecture notes in computer science, vol 10563. Springer, ChamGoogle Scholar
  14. 14.
    Farnan JM, Snyder SL, Worster BK et al (2013) Online medical professionalism: patient and public relationships: policy statement from the American college of physicians and the federation of state medical boards. Ann Intern Med 158(8):620–627Google Scholar
  15. 15.
    Househ M (2013) The use of social media in healthcare: organizational, clinical, and patient perspectives. Stud Health Technol Inform 183:244–248Google Scholar
  16. 16.
    Ventola CL (2014) Social media and health care professionals: benefits, risks, and best practices. Pharm Ther 39(7):491–499Google Scholar
  17. 17.
    Villegas NM, Sánchez C, Díaz-Cely J, Tamura G (2018) Characterizing context-aware recommender systems: a systematic literature review. Knowl Based Syst 140:173–200.  https://doi.org/10.1016/j.knosys.2017.11.003 Google Scholar
  18. 18.
    Cao Y, Kovachev D, Klamma R, Jarke M, Lau RW (2015) Tagging diversity in personal learning environments. J Comput Educ 2(1):93–121Google Scholar
  19. 19.
    Klašnja-Milićević A, Vesin B, Ivanović M, Budimac Z, Jain LC (2017) Folksonomy and tag-based recommender systems in e-learning environments. In: E-learning systems. Intelligent systems reference library, vol 112. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-41163-7_7
  20. 20.
    Jean-Louis L, Zouaq A, Gagnon M, Ensan F (2014) An assessment of online semantic annotators for the keyword extraction task. In: Pham DN, Park SB (eds) PRICAI 2014: trends in artificial intelligence. PRICAI 2014. Lecture Notes in Computer Science, vol 8862. Springer, Cham, pp 548–560.  https://doi.org/10.1007/978-3-319-13560-1_44
  21. 21.
    Thomas J R, Bharti SK, Babu KS (2016) Automatic keyword extraction for text summarization in e-newspapers. In: Proceedings of the international conference on informatics and analytics, pp 86-93. ACMGoogle Scholar
  22. 22.
    Turney PD (1999) Learning to extract keyphrases from text. Technical report ERB-1057, National Research Council Canada, Institute for Information technologyGoogle Scholar
  23. 23.
    Witten IH, Paynter GW, Frank E, Gutwin C, Nevill-Manning CG (1999) Kea: practical automatic keyphrase extraction. In Proceedings of the ACM conference on digital libraries, Berkeley, CA, US. ACM Press, New York, NY, pp 254–255Google Scholar
  24. 24.
    Sarkar K (2013) A hybrid approach to extract keyphrases from medical documents. Int J Comput Appl 63(18):14–19.  https://doi.org/10.5120/10565-5528 Google Scholar
  25. 25.
    Krapivin M, Autayeu M, Marchese M, Blanzieri E, Segata N (2010) Improving machine learning approaches for keyphrases extraction from scientific documents with natural language knowledge. In: Proceedings of the joint JCDL/ICADL international digital libraries conference. Gold Coast, Australia, pp 102–111Google Scholar
  26. 26.
    El-Beltagy SR, Rafea A (2009) Kp-miner: a keyphrase extraction system for English and Arabic documents. Inf Syst 34:132–144Google Scholar
  27. 27.
    Marinho LB, Nanopoulos A, Schmidt-Thieme L, Jäschke R, Hotho A, Stumme G (2011) Social tagging recommender systems. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, Boston, MA, pp 615–644. https://doi.org/10.1007/978-0-387-85820-3_19
  28. 28.
    Špiraneca S, Ivanjkob T (2013) Experts vs. novices tagging behavior: an exploratory analysis. Procedia Soc Behav Sci 73:456–459Google Scholar
  29. 29.
    Consortium GO et al (2017) Expansion of the gene ontology knowledgebase and resources. Nucl Acids Res 45(D1):D331–D338Google Scholar
  30. 30.
    Chen J, Zheng J, Yu H (2016) Finding important terms for patients in their electronic health records: a learning-to-rank approach using expert annotations. JMIR Med Inform 4(4):e40.  https://doi.org/10.2196/medinform.6373 Google Scholar
  31. 31.
    Hassan MM, Karray F, Kamel MS (2012) Automatic document topic identification using wikipedia hierarchical ontology. In: Proceedings of the eleventh IEEE international conference on information science, signal processing and their applications, pp 237–242Google Scholar
  32. 32.
    Allahyari M, Kochut K (2016) Semantic tagging using topic models exploiting wikipedia category network. In: Proceedings of the 10th international conference on semantic computingGoogle Scholar
  33. 33.
    Osman T, Thakker D, Schaefer G (2014) Utilising semantic technologies for intelligent indexing and retrieval of digital images. Computing 96(7):651–668Google Scholar
  34. 34.
    Gao G, Liu Y-S, Lin P, Wang M, Gu M, Yong J-H (2017) BIMTag: concept-based automatic semantic annotation of online BIM product resources. Adv Eng Inform 31:48–61Google Scholar
  35. 35.
    Zubiaga A, Fresno V, Martinez R, Garcia-Plaza AP (2013) Harnessing folksonomies to produce a social classification of resources. IEEE Trans Knowl Data Eng 25(8):1801–1813Google Scholar
  36. 36.
    Xie Q, Xiong F, Han T et al (2018) Interactive resource recommendation algorithm based on tag information. World Wide Web.  https://doi.org/10.1007/s11280-018-0532-y
  37. 37.
    Qassimi S, Abdelwahed EH, Hafidi M, Lamrani R (2016) Enrichment of ontology by exploiting collaborative tagging systems: a contextual semantic approach. In: Third international conference on systems of collaboration (SysCo). IEEE Conference Publications, pp 1–6Google Scholar
  38. 38.
    Tommasel A, Godoy D (2015) Semantic grounding of social annotations for enhancing resource classification in folksonomies. J Intell Inf Syst 44(3):415–446.  https://doi.org/10.1007/s10844-014-0339-y Google Scholar
  39. 39.
    Yu H, Zhou B, Deng M et al (2017) Tag recommendation method in folksonomy based on user tagging status. J Intell Inf Syst.  https://doi.org/10.1007/s10844-017-0468-1
  40. 40.
    Belém FM, Martins EF, Almeida JM, Goncalves MA (2014) Personalized and object-centered tag recommendation methods for web 2.0 applications. Inf Process Manag 50(4):524–553Google Scholar
  41. 41.
    Fang Q, Xu Ch, Jitao S, Shamim Hossain M, Ghoneim A (2016) Folksonomy-based visual ontology construction and its applications. IEEE Trans Multimed 18(4):702–713Google Scholar
  42. 42.
    Maui—multi-purpose automatic topic indexing, Homepage. http://www.medelyan.com/software. Accessed 16 Mar 2018
  43. 43.
    Duwairi R, Hedaya M (2016) Automatic keyphrase extraction for arabic news documents based on kea system. J Intell Fuzzy Syst 30(4):2101–2110Google Scholar
  44. 44.
    Lovins JB (1968) Development of a stemming algorithm. Mech Transl Comput Linguist 11(1–2):11–31Google Scholar
  45. 45.
    Jabeen F, Khusro S (2015) Quality-protected folksonomy maintenance approaches: a brief survey. Knowl Eng Rev 30(5):521–544.  https://doi.org/10.1017/S0269888915000120 Google Scholar
  46. 46.
    Kang J, Lerman K (2011) Leveraging user diversity to harvest knowledge on the social web.In: Privacy, Security, Risk and trust (PASSAT) and 2011 IEEE 3rd international conference on social computing (SocialCom), pp 215–222Google Scholar
  47. 47.
    Papadopoulos S, Vakali A, Kompatsiaris Y (2011) Community detection in collaborative tagging systems. Community-built databases. Springer, Berlin, pp 107–131Google Scholar
  48. 48.
    SKOS simple knowledge organization system. https://www.w3.org/TR/skos-reference/. Accessed 16 Mar 2018
  49. 49.
    Nandipati A (2011) Assessment of metadata associated with geotag pictures. Masters thesis, University of MuensterGoogle Scholar
  50. 50.
    Zhang L, Tang J, Zhang M (2012) Integrating temporal usage pattern into personalized tag prediction. In: Sheng QZ, Wang G, Jensen CS, Xu G (eds) Web technologies and applications. LNCS 7235. Springer, Berlin, pp 354–365Google Scholar
  51. 51.
    Fu W-T, Kannampallil T, Kang R, He J (2010) Semantic imitation in social tagging. ACM Trans Comput Hum Interact 17(3):1–37Google Scholar
  52. 52.
    citeulike homepage. http://www.citeulike.org/. Accessed 16 Mar 2018
  53. 53.
    US National Library of Medicine National Institutes of Health: Medical Subject Headings (MeSH). https://www.nlm.nih.gov/mesh. Accessed 16 Mar 2018
  54. 54.
    Chuang H-Y et al (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140.  https://doi.org/10.1038/msb4100180 Google Scholar
  55. 55.
    Naderi A, Teschendorff AE, Barbosa-Morais NL, Pinder SE, Green AR, Powe DG, Robertson JF, Aparicio S, Ellis IO, Brenton JD, Caldas C (2007) A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene 26:1507–1516.  https://doi.org/10.1038/sj.onc.1209920 Google Scholar
  56. 56.
    RAKE Homepage. https://hackage.haskell.org/package/rake. Accessed 16 Mar 2018
  57. 57.
    van Rijsbergen CJ (1979) Information retrieval. Butterworths, LondonzbMATHGoogle Scholar
  58. 58.
    Vrije Universiteit Amsterdam, MeSH terms Homepage. http://libguides.vu.nl/PMroadmap/MeSH. Accessed 16 Mar 2018
  59. 59.
    Musto C, Basile P, Lops P, de Gemmis M, Semeraro G (2017) Introducing linked open data in graph-based recommender systems. Inf Process Manag 53(2):405–435Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LISI Laboratory, Faculty of Sciences Semlalia MarrakechCadi Ayyad UniversityMarrakechMorocco

Personalised recommendations