Advertisement

Computing

, Volume 101, Issue 11, pp 1609–1632 | Cite as

Generalized Ant Colony Optimizer: swarm-based meta-heuristic algorithm for cloud services execution

  • Ajay KumarEmail author
  • Seema Bawa
Article

Abstract

This work presents a swarm-based meta-heuristic technique known as Generalized Ant Colony Optimizer (GACO). It is a hybrid approach which consists of Simple Ant Colony Optimization and Global Colony Optimization concepts. The main concept behind GACO is the foraging behavior of ants. GACO operates in the following four phases: Creation of a new colony, search of nearest food location, balance the solution, and updating of pheromone. GACO has been tested on seventeen well recognized standard benchmark functions and its results have been compared with three different meta-heuristic algorithms namely as Genetic Algorithm, Particle Swarm Optimization and Artificial Bee Colony. The performance metrics such as average and standard deviation are computed and evaluated with respect to these metrics. The proposed GACO performs better in comparison to the aforementioned algorithms. The proposed algorithm optimizes the cloud resource allocation problem and gives better results with unknown search spaces.

Keywords

Ant algorithms Meta-heuristics Cloud computing Optimization 

Mathematics Subject Classification

91B32 68T20 90C26 

References

  1. 1.
    Kumar A, Bawa S (2012) Distributed and big data storage management in grid computing, arXiv preprint arXiv:1207.2867 Google Scholar
  2. 2.
    Choi Y, Lim Y (2016) Optimization approach for resource allocation on cloud computing for IoT. Int J Distrib Sens Netw 12(3):3479247Google Scholar
  3. 3.
    Leitner P, Ferner J, Hummer W, Dustdar S (2013) Data-driven and automated prediction of service level agreement violations in service compositions. Distrib Parallel Databases 31(3):447Google Scholar
  4. 4.
    Leitner P, Hummer W, Dustdar S (2013) Cost-based optimization of service compositions. IEEE Trans Serv Comput 6(2):239Google Scholar
  5. 5.
    Farahnakian F, Ashraf A, Pahikkala T, Liljeberg P, Plosila J, Porres I, Tenhunen H (2015) Using ant colony system to consolidate VMs for green cloud computing. IEEE Trans Serv Comput 8(2):187Google Scholar
  6. 6.
    Riveni M, Nguyen TD, Dustdar S (2017) In: International conference on business process management. Springer, pp 361–373Google Scholar
  7. 7.
    Ranjan R, Wang L, Chen J, Benatallah B (2011) Cloud computing: methodology, systems, and applications. CRC Press, Boca RatonGoogle Scholar
  8. 8.
    Özer AH, Özturan C (2009) In: Fifth international conference on soft computing, computing with words and perceptions in system analysis, decision and control, 2009. ICSCCW 2009. IEEE, pp 1–4Google Scholar
  9. 9.
    Li W, Liu X, Zhang X, Zhang X (2015) Dynamic fair allocation of multiple resources with bounded number of tasks in cloud computing systems. Multiagent Grid Syst 11(4):245Google Scholar
  10. 10.
    Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2–3):243MathSciNetzbMATHGoogle Scholar
  11. 11.
    Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185(3):1155MathSciNetzbMATHGoogle Scholar
  12. 12.
    Merkle D, Middendorf M (2003) Ant colony optimization with global pheromone evaluation for scheduling a single machine. Appl Intell 18(1):105zbMATHGoogle Scholar
  13. 13.
    Liu X, Zhang X, Li W, Zhang X (2017) Swarm optimization algorithms applied to multi-resource fair allocation in heterogeneous cloud computing systems. Computing 99(12):1231MathSciNetzbMATHGoogle Scholar
  14. 14.
    Neshat M, Sepidnam G, Sargolzaei M, Toosi AN (2014) Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif Intell Rev 42(4):965Google Scholar
  15. 15.
    Kennedy J (2010) Particle swarm optimization. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning. Springer US, Boston, MA, pp 760–766.  https://doi.org/10.1007/978-0-387-30164-8_630 Google Scholar
  16. 16.
    Karaboga D, Ozturk C (2011) A novel clustering approach: artificial bee colony (ABC) algorithm. Appl Soft Comput 11(1):652Google Scholar
  17. 17.
    Dorigo M, Caro G Di (1999) In: Proceedings of the 1999 congress on evolutionary computation, 1999. CEC 99, vol 2, IEEE, pp 1470–1477Google Scholar
  18. 18.
    Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17Google Scholar
  19. 19.
    Yang XS (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Inspir Comput 3(5):267Google Scholar
  20. 20.
    Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222MathSciNetGoogle Scholar
  21. 21.
    Karimkashi S, Kishk AA (2010) Invasive weed optimization and its features in electromagnetics. IEEE Trans Antennas Propag 58(4):1269Google Scholar
  22. 22.
    Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspir Comput 2(2):78Google Scholar
  23. 23.
    Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48Google Scholar
  24. 24.
    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46Google Scholar
  25. 25.
    Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50Google Scholar
  26. 26.
    Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831MathSciNetzbMATHGoogle Scholar
  27. 27.
    Yan JY, Ling Q, Sun DM (2006) In: International conference on machine learning and cybernetics, 2006, IEEE, pp 2103–2106Google Scholar
  28. 28.
    Weile DS, Michielssen E (1997) Genetic algorithm optimization applied to electromagnetics: a review. IEEE Trans Antennas Propag 45(3):343Google Scholar
  29. 29.
    Du D, Simon D, Ergezer M (2009) In: IEEE international conference on systems, man and cybernetics, 2009. SMC 2009, IEEE, pp 997–1002Google Scholar
  30. 30.
    Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3(2):82Google Scholar
  31. 31.
    Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput 4(2):87Google Scholar
  32. 32.
    Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175MathSciNetGoogle Scholar
  33. 33.
    Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60Google Scholar
  34. 34.
    Van Laarhoven PJ, Aarts EH (1987) Simulated annealing: theory and applications. Springer, New York, pp 7–15zbMATHGoogle Scholar
  35. 35.
    Yang Ll, Qian Wy, Zhang Q (2011) Central force optimization. J Bohai Univ (Nat Sci Ed) 3:001Google Scholar
  36. 36.
    Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B (Cybern) 26(1):29Google Scholar
  37. 37.
    Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life Rev 2(4):353Google Scholar
  38. 38.
    Taillard E (1998) FANT: fast ant system, Technical reportGoogle Scholar
  39. 39.
    Dorigo M, Caro GD, Gambardella LM (1999) Ant algorithms for discrete optimization. Artif Life 5(2):137Google Scholar
  40. 40.
    Kaji T (2001) In: IEEE international conference on systems, man, and cybernetics, 2001, vol. 5, IEEE, pp 3429–3434Google Scholar
  41. 41.
    Boryczka U (2009) Finding groups in data: cluster analysis with ants. Appl Soft Comput 9(1):61Google Scholar
  42. 42.
    Giraldo LF, Lozano F, Quijano N (2011) Foraging theory for dimensionality reduction of clustered data. Mach Learn 82(1):71MathSciNetGoogle Scholar
  43. 43.
    Deneubourg J, Goss S, Franks N, Sendova-Franks A, Detrain C, Chretien L (1992) In: From animals to animats: proceedings of the first international conference on simulation of adaptive behavior, pp 353–363Google Scholar
  44. 44.
    Dorigo M, Birattari M (2011) Encyclopedia of machine learning. Springer, New York, pp 36–39Google Scholar
  45. 45.
    Dorigo M, Stützle T (2003) Handbook of metaheuristics. Springer, New York, pp 250–285Google Scholar
  46. 46.
    Shtovba SD (2005) Ant algorithms: theory and applications. Program Comput Softw 31(4):167zbMATHGoogle Scholar
  47. 47.
    Silva CA, Sousa J, Runkler TA, Da Costa JS (2009) Distributed supply chain management using ant colony optimization. Eur J Oper Res 199(2):349MathSciNetzbMATHGoogle Scholar
  48. 48.
    Lorpunmanee S, Sap MN, Abdullah AH, Chompoo-inwai C (2007) An ant colony optimization for dynamic job scheduling in grid environment. Int J Comput Inf Sci Eng 1(4):207Google Scholar
  49. 49.
    Singh B, Bawa S (2007) In: Proceedings of the third conference on IASTED international conference, pp 283–286Google Scholar
  50. 50.
    Di Caro G, Dorigo M (1998) In: International conference on parallel problem solving from nature, Springer, pp 673–682Google Scholar
  51. 51.
    Ahuja A, Das S, Pahwa A (2007) An AIS-ACO hybrid approach for multi-objective distribution system reconfiguration. IEEE Trans Power Syst 22(3):1101Google Scholar
  52. 52.
    Gao Y, Guan H, Qi Z, Hou Y, Liu L (2013) A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J Comput Syst Sci 79(8):1230MathSciNetzbMATHGoogle Scholar
  53. 53.
    Runkler TA (2005) Ant colony optimization of clustering models. Int J Intell Syst 20(12):1233zbMATHGoogle Scholar
  54. 54.
    Luh GC, Lin CY (2008) Optimal design of truss structures using ant algorithm. Struct Multidiscip Optim 36(4):365Google Scholar
  55. 55.
    Kasprzok A, Ayalew B, Lau C (2018) An ant-inspired model for multi-agent interaction networks without stigmergy. Swarm Intell 12(1):53Google Scholar
  56. 56.
    Pacini E, Mateos C, Garino CG (2016) Multi-objective swarm intelligence schedulers for online scientific clouds. Computing 98(5):495MathSciNetGoogle Scholar
  57. 57.
    Mavrovouniotis M, Müller FM, Yang S (2017) Ant colony optimization with local search for dynamic traveling salesman problems. IEEE Trans Cybern 47(7):1743Google Scholar
  58. 58.
    Merkle D, Middendorf M (2002) Modeling the dynamics of ant colony optimization. Evolut Comput 10(3):235zbMATHGoogle Scholar
  59. 59.
    Gutjahr WJ (2000) A graph-based ant system and its convergence. Future Gener Comput Syst 16(8):873Google Scholar
  60. 60.
    Kolavali SR, Bhatnagar S (2008) In: International conference on network control and optimization, Springer, pp 37–44Google Scholar
  61. 61.
    Liu J, Xu S, Zhang F, Wang L (2017) A hybrid genetic-ant colony optimization algorithm for the optimal path selection. Intell Autom Soft Comput 23(2):235Google Scholar
  62. 62.
    Gambardella LM, Dorigo M (2000) An ant colony system hybridized with a new local search for the sequential ordering problem. INFORMS J Comput 12(3):237MathSciNetzbMATHGoogle Scholar
  63. 63.
    Costa D, Hertz A (1997) Ants can colour graphs. J Oper Res Soc 48(3):295zbMATHGoogle Scholar
  64. 64.
    Žerovnik J, Vesel A (2000) How well can ants color graphs? J Comput Inf Technol 8(2):131Google Scholar
  65. 65.
    Bianchi L, Gambardella LM, Dorigo M (2002) In: International conference on parallel problem solving from nature, Springer, pp 883–892Google Scholar
  66. 66.
    Reimann M, Doerner K, Hartl RF (2004) D-ants: savings based ants divide and conquer the vehicle routing problem. Comput Oper Res 31(4):563zbMATHGoogle Scholar
  67. 67.
    Moss J, Johnson CG (2003) In: Artificial neural nets and genetic algorithms, Springer, pp 182–186Google Scholar
  68. 68.
    Solnon C (2002) Ants can solve constraint satisfaction problems. IEEE Trans Evolut Comput 6(4):347Google Scholar
  69. 69.
    Parpinelli RS, Lopes HS, Freitas AA (2002) Data mining with an ant colony optimization algorithm. IEEE Trans Evolut Comput 6(4):321zbMATHGoogle Scholar
  70. 70.
    Merz P, Freisleben B (1999) In: Proceedings of the 1999 congress on evolutionary computation, 1999. CEC 99. vol. 3, IEEE, pp 2063–2070Google Scholar
  71. 71.
    Stutzle T, Dorigo M (1999) Aco algorithms for the quadratic assignment problem. New Ideas Optim C(C50):33zbMATHGoogle Scholar
  72. 72.
    Banerjee S, Mukherjee I, Mahanti P (2009) Cloud computing initiative using modified ant colony framework. World Acad Sci Eng Technol 56(32):221Google Scholar
  73. 73.
    Socha K (2004) In: International workshop on ant colony optimization and swarm intelligence, Springer, pp 25–36Google Scholar
  74. 74.
    Lu DN, Nguyen TH, Nguyen DN, Nguyen HN et al. (2017) In: International conference on information networking (ICOIN), 2017, IEEE, pp 584–589Google Scholar
  75. 75.
    Zeng W, Zhao Y, Ou K, Song W (2009) In: Proceedings of the 2nd international conference on interaction sciences: information technology, culture and human, ACM, pp 1044–1048Google Scholar
  76. 76.
    Mishra R, Jaiswal A (2012) Ant colony optimization: a solution of load balancing in cloud. Int J Web Semant Technol 3(2):33Google Scholar
  77. 77.
    Gutjahr WJ (2002) ACO algorithms with guaranteed convergence to the optimal solution. Inf Process Lett 82(3):145MathSciNetzbMATHGoogle Scholar
  78. 78.
    Nakib A, Ismail B, Ouchraa S, Schmitt L et al (2017) Metaheuristics for intelligent electrical networks, vol 10. Wiley, HobokenGoogle Scholar
  79. 79.
    Molga M, Smutnicki C (2005) Test functions for optimization needs, Test Funct Optim Needs 101Google Scholar
  80. 80.
    Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimisation problems. Int J Math Modell Numer Optim 4(2):150zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Thapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations