pp 1–47 | Cite as

Automated analysis of feature models: Quo vadis?

  • José A. GalindoEmail author
  • David Benavides
  • Pablo Trinidad
  • Antonio-Manuel Gutiérrez-Fernández
  • Antonio Ruiz-Cortés


Feature models have been used since the 90s to describe software product lines as a way of reusing common parts in a family of software systems. In 2010, a systematic literature review was published summarizing the advances and settling the basis of the area of automated analysis of feature models (AAFM). From then on, different studies have applied the AAFM in different domains. In this paper, we provide an overview of the evolution of this field since 2010 by performing a systematic mapping study considering 423 primary sources. We found six different variability facets where the AAFM is being applied that define the tendencies: product configuration and derivation; testing and evolution; reverse engineering; multi-model variability-analysis; variability modelling and variability-intensive systems. We also confirmed that there is a lack of industrial evidence in most of the cases. Finally, we present where and when the papers have been published and who are the authors and institutions that are contributing to the field. We observed that the maturity is proven by the increment in the number of journals published along the years as well as the diversity of conferences and workshops where papers are published. We also suggest some synergies with other areas such as cloud or mobile computing among others that can motivate further research in the future.


Software product lines Automated analysis Feature models Variability-intensive systems 

Mathematics Subject Classification




This work was supported, in part, by the European Commission (FEDER), by the Spanish government under BELi (TIN2015-70560-R) project and by the Andalusian government under the COPAS (TIC-1867) project. You can find all the material used in this paper in the website


  1. 1.
    Acher M, Collet P, Lahire P, France RB (2013) FAMILIAR: a domain-specific language for large scale management of feature models. Sci Comput Program (SCP) 78(6):657–681CrossRefGoogle Scholar
  2. 2.
    Alférez M, Acher M, Galindo JA, Baudry B, Benavides D (2018) Modeling variability in the video domain: language and experience report. Softw Qual J. CrossRefGoogle Scholar
  3. 3.
    Batory D, Benavides D, Ruiz-Cortes A (2006) Automated analysis of feature models: challenges ahead. Commun ACM 49(12):45–47. CrossRefGoogle Scholar
  4. 4.
    Benavides D, Segura S, Ruiz-Cortés A (2010) Automated analysis of feature models 20 years later. Inf Syst 35(6):615–636CrossRefGoogle Scholar
  5. 5.
    Benavides D, Trinidad P, Cortés AR, Segura S (2013) FaMa, Springer Berlin Heidelberg, chap FaMa, pp 163–171.
  6. 6.
    Capilla R (2013) Variability realization techniques and product derivation. In: Systems and software variability management, Springer, pp 87–99Google Scholar
  7. 7.
    Clements P, Northrop L (2002) Software product lines. Addison-Wesley, BostonGoogle Scholar
  8. 8.
    Durán A, Benavides D, Segura S, Trinidad P, Ruiz-Cortés A (in press) FLAME: a formal framework for the automated analysis of software product lines validated by automated specification testing. Softw Syst Model.
  9. 9.
    Engström E, Runeson P (2011) Software product line testing—a systematic mapping study. Inf Softw Technol 53(1):2–13. CrossRefGoogle Scholar
  10. 10.
    Galindo J, Turner H, Benavides D, White J (2014) Testing variability-intensive systems using automated analysis: an application to android. Softw Qual J. CrossRefGoogle Scholar
  11. 11.
    Grant MJ, Booth A (2009) A typology of reviews: an analysis of 14 review types and associated methodologies. Health Inf Libr J 26(2):91–108CrossRefGoogle Scholar
  12. 12.
    Heradio R, Perez-Morago H, Fernandez-Amoros D, Cabrerizo FJ, Herrera-Viedma E (2015) A science mapping analysis of the literature on software product lines. In: Fujita H, Guizzi G (eds) Intelligent software methodologies, tools and techniques, communications in computer and information science. Springer International Publishing, Berlin, pp 242–251. CrossRefGoogle Scholar
  13. 13.
    Heradio R, Perez-Morago H, Fernandez-Amoros D, Cabrerizo FJ, Herrera-Viedma E (2016) A bibliometric analysis of 20 years of research on software product lines. Inf Softw Technol 72:1–15. CrossRefGoogle Scholar
  14. 14.
    Jia C, Cai Y, Yu YT, Tse TH (2016) 5W + 1H pattern: A perspective of systematic mapping studies and a case study on cloud software testing. J Syst Softw 116:206–219. CrossRefGoogle Scholar
  15. 15.
    Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-oriented domain analysis (foda) feasibility study. Tech. rep., DTIC DocumentGoogle Scholar
  16. 16.
    Kipling R (1902) Just so stories. MacMillan, LondonGoogle Scholar
  17. 17.
    Kitchenham B, Brereton OP, Budgen D, Turner M, Bailey J, Linkman S (2009) Systematic literature reviews in software engineering—a systematic literature review. Inf Softw Technol 51(1):7–15. (special Section—Most Cited Articles in 2002 and Regular Research Papers)CrossRefGoogle Scholar
  18. 18.
    Laguna MA, Crespo Y (2013) A systematic mapping study on software product line evolution: from legacy system reengineering to product line refactoring. Sci Comput Program 78(8):1010–1034. CrossRefGoogle Scholar
  19. 19.
    Lopez-Herrejon RE, Linsbauer L, Egyed A (2015) A systematic mapping study of search-based software engineering for software product lines. Inf Softw Technol 61:33–51. CrossRefGoogle Scholar
  20. 20.
    Méndez-Acuña D, Galindo JA, Degueule T, Combemale B, Baudry B (2016) Leveraging software product lines engineering in the development of external dsls: a systematic literature review. Comput Lang Syst Struct 46:206–235. CrossRefGoogle Scholar
  21. 21.
    Mendonca M, Branco M, Cowan D (2009) S.p.l.o.t.: Software product lines online tools. In: Proceedings of the 24th ACM SIGPLAN conference companion on object oriented programming systems languages and applications, ACM, New York, NY, USA, OOPSLA ’09, pp 761–762.
  22. 22.
    Montalvillo L, Díaz O (2016) Requirement-driven evolution in software product lines: a systematic mapping study. J Syst Softw 122:110–143. CrossRefGoogle Scholar
  23. 23.
    da Mota Silveira Neto PA, do Carmo Machado I, McGregor JD, de Almeida ES, de Lemos Meira SR(2011) A systematic mapping study of software product lines testing. Inf Softw Technol 53(5):407–423. special Section on Best Papers from XP2010
  24. 24.
    Petersen K, Feldt R, Mujtaba S, Mattsson M (2008a) Systematic mapping studies in software engineering. In: Proceedings of the 12th international conference on evaluation and assessment in software engineering, British Computer Society, Swinton, UK, UK, EASE’08, pp 68–77Google Scholar
  25. 25.
    Petersen K, Feldt R, Mujtaba S, Mattsson M (2008b) Systematic mapping studies in software engineering. In: Proceedings of the 12th international conference on evaluation and assessment in software engineering, BCS Learning & Development Ltd., Swindon, UK, EASE’08, pp 68–77Google Scholar
  26. 26.
    Schobbens P, Heymans P, Trigaux J, Bontemps Y (2007) Generic semantics of feature diagrams. Comput Netw 51(2):456–479. zbMATHCrossRefGoogle Scholar
  27. 27.
    Wieringa R, Maiden N, Mead N, Rolland C (2006) Requirements engineering paper classification and evaluation criteria: a proposal and a discussion. Requir Eng 11(1):102–107CrossRefGoogle Scholar

Primary sources

  1. 28.
    Abal I, Brabrand C, Wasowski A (2014) 42 variability bugs in the linux kernel: a qualitative analysis. In: ASE.
  2. 29.
    Abele A, Papadopoulos Y, Servat D, Törngren M, Weber M (2010) The cvm framework-a prototype tool for compositional variability management. In: VAMOS, vol 10, pp 101–105Google Scholar
  3. 30.
    Acher M, Collet P, Lahire P, France R (2011) Slicing feature models. In: ASE, pp 424–427.
  4. 31.
    Acher M, Cleve A, Perrouin G, Heymans P, Vanbeneden C, Collet P, Lahire P (2012a) On extracting feature models from product descriptions. In: VAMOS, pp 45–54.
  5. 32.
    Acher M, Collet P, Gaignard A, Lahire P, Montagnat J, France R (2012b) Composing multiple variability artifacts to assemble coherent workflows. SQJ 20(3–4):689–734. CrossRefGoogle Scholar
  6. 33.
    Acher M, Collet P, Lahire P, France R (2012c) Separation of concerns in feature modeling: support and applications. In: AOSD, pp 1–12.
  7. 34.
    Acher M, Baudry B, Heymans P, Cleve A, Hainaut JL (2013a) Support for reverse engineering and maintaining feature models. In: VAMOS, ACM, p 20.
  8. 35.
    Acher M, Collet P, Lahire P, France RB (2013b) Familiar: a domain-specific language for large scale management of feature models. SCP 78(6):657–681. CrossRefGoogle Scholar
  9. 36.
    Acher M, Cleve A, Collet P, Merle P, Duchien L, Lahire P (2014) Extraction and evolution of architectural variability models in plugin-based systems. SOSYM 13(4):1367–1394. CrossRefGoogle Scholar
  10. 37.
    Ajoudanian S, Hosseinabadi SH (2015) Automatic promotional specialization, generalization and analysis of extended feature models with cardinalities in alloy. LAMP 84(5):640–667. MathSciNetCrossRefGoogle Scholar
  11. 38.
    Al-Hajjaji M, Thüm T, Meinicke J, Lochau M, Saake G (2014) Similarity-based prioritization in software product-line testing. In: SPLC, ACM, pp 197–206.
  12. 39.
    Andersen N, Czarnecki K, She S, Wąsowski A (2012) Efficient synthesis of feature models. In: SPLC, vol 1, pp 106–115.
  13. 40.
    Antkiewicz M, Ba̧k K, Murashkin A, Olaechea R, (2013) Clafer tools for product line engineering. In: SPLC.
  14. 41.
    Apel S, Speidel H, Wendler P, Von Rhein A, Beyer D (2011) Detection of feature interactions using feature-aware verification. In: ASE, IEEE computer society, pp 372–375.
  15. 42.
    Apel S, Von Rhein A, ThüM T, KäStner C (2013) Feature-interaction detection based on feature-based specifications. CNJ 57(12):2399–2409. CrossRefGoogle Scholar
  16. 43.
    Arcaini P, Gargantini A, Vavassori P (2015) Generating tests for detecting faults in feature models. In: ICST.
  17. 44.
    Arcaini P, Gargantini A, Vavassori P (2017) Automated repairing of variability models. In: SPLC, vol 1, pp 9–18.
  18. 45.
    Arrieta A, Sagardui G, Etxeberria L, Zander J (2017) Automatic generation of test system instances for configurable cyber-physical systems. SQJ 25(3):1041–1083. CrossRefGoogle Scholar
  19. 46.
    Asadi M, Mohabbati B, Gröner G, Gasevic D (2014a) Development and validation of customized process models. JSS 96:73–92. CrossRefGoogle Scholar
  20. 47.
    Asadi M, Soltani S, Gasevic D, Hatala M, Bagheri E (2014b) Toward automated feature model configuration with optimizing non-functional requirements. IST 56(9):1144–1165. CrossRefGoogle Scholar
  21. 48.
    Assunção W, Lopez-Herrejon R, Linsbauer L, Vergilio S, Egyed A (2017) Multi-objective reverse engineering of variability-safe feature models based on code dependencies of system variants. ESE 22(4):1763–1794. CrossRefGoogle Scholar
  22. 49.
    Bagheri E, Asadi M, Gasevic D, Soltani S (2010a) Stratified analytic hierarchy process: Prioritization and selection of software features. In: SPLC, vol 6287 LNCS, pp 300–315.
  23. 50.
    Bagheri E, Di Noia T, Ragone A, Gasevic D (2010b) Configuring software product line feature models based on stakeholders’ soft and hard requirements. In: SPLC. Springer, pp 16–31.
  24. 51.
    Bagheri E, Noia TD, Gasevic D, Ragone A (2012) Formalizing interactive staged feature model configuration. JSEP 24(4):375–400. CrossRefGoogle Scholar
  25. 52.
    Bagheri Eb, Gasevic D (2011) Assessing the maintainability of software product line feature models using structural metrics. SQJ 19(3):579–612. CrossRefGoogle Scholar
  26. 53.
    Baresi L, Guinea S, Pasquale L (2012) Service-oriented dynamic software product lines. Computer 45(10):42–48. CrossRefGoogle Scholar
  27. 54.
    Bécan G, Behjati R, Gotlieb A, Acher M (2015) Synthesis of attributed feature models from product descriptions. In: SPLC, vol 20-24-July-2015, pp 1–10.
  28. 55.
    Bécan G, Acher M, Baudry B, Nasr SB (2015) Breathing ontological knowledge into feature model synthesis: an empirical study. ESE, pp 1–48.
  29. 56.
    Beek Mt, Legay A, Lafuente A, Vandin A (2016a) Statistical model checking for product lines. In: ISOLA, vol 9952 LNCS, pp 114–133.
  30. 57.
    Beek Mt, Reniers M, de Vink E (2016b) Supervisory controller synthesis for product lines using cif 3. In: ISOLA, vol 9952 LNCS, pp 856–873.
  31. 58.
    Beek MHt, Legay A, Lafuente AL, Vandin A (2015) Statistical analysis of probabilistic models of software product lines with quantitative constraints. In: SPLC. ACM, pp 11–15.
  32. 59.
    Beek MHt, De Vink EP (2014) Using mcrl2 for the analysis of software product lines. In: FormaliSE. ACM, pp 31–37.
  33. 60.
    Benavides D, Felfernig A, Galindo J, Reinfrank F (2013) Automated analysis in feature modelling and product configuration. In: ICSR, vol 7925 LNCS, pp 160–175.
  34. 61.
    Berger T, She S, Lotufo R, Czarnecki K, Wasowski A (2010a) Feature-to-code mapping in two large product lines. In: SPLC. Citeseer, pp 498–499.
  35. 62.
    Berger T, She S, Lotufo R, Wąsowski A, Czarnecki K (2010b) Variability modeling in the real: a perspective from the operating systems domain. In: ASE, pp 73–82.
  36. 63.
    Berger T, She S, Lotufo R, Wasowski A, Czarnecki K (2013) A study of variability models and languages in the systems software domain. TSE 39(12):1611–1640. CrossRefGoogle Scholar
  37. 64.
    Berger T, Lettner D, Rubin J, Grünbacher P, Silva A, Becker M, Chechik M, Czarnecki K (2015) What is a feature? a qualitative study of features in industrial software product lines. In: SPLC, vol 20-24-July-2015, pp 16–25.
  38. 65.
    Bezerra C, Andrade R, Monteiro J (2017) Exploring quality measures for the evaluation of feature models: a case study. JSS 131:366–385. CrossRefGoogle Scholar
  39. 66.
    Bąk K, Diskin Z, Antkiewicz M, Czarnecki K, Wąsowski A (2016) Clafer: unifying class and feature modeling. SOSYM 15(3):811–845. CrossRefGoogle Scholar
  40. 67.
    Boškovi M, Bagheri E, GaŠevi D, Mohabbati B, Kaviani N, Hatala M (2010) Automated staged configuration with semantic web technologies. IJSEKE 20(4):459–484. CrossRefGoogle Scholar
  41. 68.
    Boucher Q, Perrouin G, Heymans Pb (2012) Deriving configuration interfaces from feature models: a vision paper. In: VAMOS, pp 37–44.
  42. 69.
    Brabrand C, Ribeiro M, Tolêdo T, Borba P (2012) Intraprocedural dataflow analysis for software product lines. In: AOSD. ACM, pp 13–24.
  43. 70.
    Buchmann T, Dotor A, Westfechtel B (2013) Mod2-scm: A model-driven product line for software configuration management systems. IST 55(3):630–650. CrossRefGoogle Scholar
  44. 71.
    Bürdek J, Kehrer T, Lochau M, Reuling D, Kelter U, Schürr A (2016) Reasoning about product-line evolution using complex feature model differences. ASEJ 23(4):687–733. CrossRefGoogle Scholar
  45. 72.
    Camacho C, Llana L, Núñez A (2016) Cost-related interface for software product lines. LAMP 85(1):227–244. MathSciNetzbMATHCrossRefGoogle Scholar
  46. 73.
    Capilla R, Bosch J (2011) The promise and challenge of runtime variability. Computer 44(12):93–95. CrossRefGoogle Scholar
  47. 74.
    Capilla R, Bosch J, Trinidad P, Ruiz-Cortés A, Hinchey M (2014a) An overview of dynamic software product line architectures and techniques: observations from research and industry. JSS 91(1):3–23. CrossRefGoogle Scholar
  48. 75.
    Capilla R, Ortiz Ó, Hinchey M (2014b) Context variability for context-aware systems. Computer 47(2):85–87. CrossRefGoogle Scholar
  49. 76.
    Chavarriaga J, Rangel C, Noguera C, Casallas R, Jonckers V (2015) Using multiple feature models to specify configuration options for electrical transformers: an experience report. In: SPLC, vol 20-24-July-2015, pp 216–224.
  50. 77.
    Chen S, Erwig M (2011) Optimizing the product derivation process. In: SPLC, pp 35–44.
  51. 78.
    Chimiak-Opoka J, Demuth B (2011) Ocl tools report based on the ide4ocl feature model. ECEASSTGoogle Scholar
  52. 79.
    Chrszon P, Dubslaff C, Klüppelholz S, Baier C (2016) Family-based modeling and analysis for probabilistic systems - featuring profeat. In: FASE, vol 9633, pp 287–304.
  53. 80.
    Chrszon P, Dubslaff C, Klüppelholz S, Baier C (2017) Profeat: feature-oriented engineering for family-based probabilistic model checking. FAC 30(1):45–75. MathSciNetCrossRefGoogle Scholar
  54. 81.
    Classen A, Boucher Q, Heymans P (2011) A text-based approach to feature modelling: syntax and semantics of tvl. SCP 76(12):1130–1143. CrossRefGoogle Scholar
  55. 82.
    Classen A, Heymans P, Schobbens PY, Legay A (2011) Symbolic model checking of software product lines. In: ICSE. ACM, pp 321–330.
  56. 83.
    Cordy M, Schobbens PY, Heymans P, Legay A (2013) Beyond boolean product-line model checking: dealing with feature attributes and multi-features. In: ICSE. IEEE Press, pp 472–481.
  57. 84.
    Costa GCB, Braga R, David JMN, Campos F (2015) A scientific software product line for the bioinformatics domain. JBI 56:239–264. CrossRefGoogle Scholar
  58. 85.
    Czarnecki K, Grünbacher P, Rabiser R, Schmid K, Wąsowski A (2012) Cool features and tough decisions: a comparison of variability modeling approaches. In: VAMOS. ACM, pp 173–182.
  59. 86.
    Davril JM, Delfosse E, Hariri N, Acher M, Cleland-Huang J, Heymans P (2013) Feature model extraction from large collections of informal product descriptions. In: ESEC/FSE, pp 290–300.
  60. 87.
    Díaz J, Pérez J, Garbajosa J (2015) A model for tracing variability from features to product-line architectures: a case study in smart grids. REJ 20(3):323–343. CrossRefGoogle Scholar
  61. 88.
    Del-Río-Ortega A, Resinas M, Cabanillas C, Ruiz-Cortés A (2013) On the definition and design-time analysis of process performance indicators. IS 38(4):470–490. CrossRefGoogle Scholar
  62. 89.
    Dermeval Db, Tenório T, Bittencourt I, Silva A, Isotani S, Ribeiro M (2015) Ontology-based feature modeling: an empirical study in changing scenarios. ESA 42(11):4950–4964. CrossRefGoogle Scholar
  63. 90.
    Dhungana D, Seichter D, Botterweck G, Rabiser R, Grunbacher P, Benavides D, Galindo JA (2011) Configuration of multi product lines by bridging heterogeneous variability modeling approaches. In: SPLC. IEEE, pp 120–129.
  64. 91.
    Dhungana D, Seichter D, Botterweck G, Rabiser R, Grünbacher P, Benavides D, Galindo JA (2013) Integrating heterogeneous variability modeling approaches with invar. In: VAMOS. ACM, p 8.
  65. 92.
    Dintzner N, Van Deursen A, Pinzger M (2014) Extracting feature model changes from the linux kernel using fmdiff. In: VAMOS. ACM, p 22.
  66. 93.
    Dintzner N, van Deursen A, Pinzger M (2017) Analysing the linux kernel feature model changes using fmdiff. SOSYM 16(1):55–76. CrossRefGoogle Scholar
  67. 94.
    Diskin Z, Safilian A, Maibaum T, Ben-David S (2016) Faithful modeling of product lines with kripke structures and modal logic. SACS 26(1):69–122. MathSciNetzbMATHCrossRefGoogle Scholar
  68. 95.
    Dougherty B, White J, Schmidt DC (2012) Model-driven auto-scaling of green cloud computing infrastructure. FGCS 28(2):371–378. CrossRefGoogle Scholar
  69. 96.
    Dumitrescu C, Mazo R, Salinesi C, Dauron A (2013) Bridging the gap between product lines and systems engineering: an experience in variability management for automotive model based systems engineering. In: SPLC. ACM, pp 254–263.
  70. 97.
    Dumitru H, Gibiec M, Hariri N, Cleland-Huang J, Mobasher B, Castro-Herrera C, Mirakhorli M (2011) On-demand feature recommendations derived from mining public product descriptions. In: ICSE, pp 181–190.
  71. 98.
    Duran M, Mussbacher G (2016) Investigation of feature run-time conflicts on goal model-based reuse. ISF 18(5):855–875. CrossRefGoogle Scholar
  72. 99.
    Duran-Limon H, Garcia-Rios C, Castillo-Barrera F, Capilla R (2015) An ontology-based product architecture derivation approach. TSE 41(12):1153–1168. CrossRefGoogle Scholar
  73. 100.
    Durán A, Benavides D, Segura S, Trinidad P, Ruiz-Cortés A (2017) Flame: a formal framework for the automated analysis of software product lines validated by automated specification testing. SOSYM 16(4):1049–1082. CrossRefGoogle Scholar
  74. 101.
    Eichelberger H, Schmid K (2014) Mapping the design-space of textual variability modeling languages: a refined analysis. STTT 17(5):559–584. CrossRefGoogle Scholar
  75. 102.
    El-Sharkawy S, Dederichs S, Schmid K (2012) From feature models to decision models and back again an analysis based on formal transformations. In: SPLC. ACM, pp 126–135.
  76. 103.
    El-Sharkawy S, Krafczyk A, Schmid K (2017) An empirical study of configuration mismatches in linux. In: SPLC, vol 1, pp 19–28.
  77. 104.
    Ensan F, Bagheri E, Gašević D (2012) Evolutionary search-based test generation for software product line feature models. In: AISE pp 613–628.
  78. 105.
    Esfahani N, Elkhodary A, Malek S (2013) A learning-based framework for engineering feature-oriented self-adaptive software systems. TSE 39(11):1467–1493. CrossRefGoogle Scholar
  79. 106.
    Famelis M, Salay R, Chechik M (2012) Partial models: Towards modeling and reasoning with uncertainty. In: ICSE. IEEE, pp 573–583.
  80. 107.
    Felfernig A, Reiterer S, Stettinger M, Tiihonen J (2015a) Intelligent techniques for configuration knowledge evolution. In: VAMOS, vol 21-23-January-2015, pp 51–58.
  81. 108.
    Felfernig A, Reiterer S, Stettinger M, Tiihonen J (2015b) Towards understanding cognitive aspects of configuration knowledge formalization. In: VAMOS, vol 21-23-January-2015, pp 117–123.
  82. 109.
    Fernandes P, Werner C, Teixeira E (2011) An approach for feature modeling of context-aware software product line. JUCS 17(5):807–829Google Scholar
  83. 110.
    Fernandez-Amoros D, Heradio R, Cerrada C, Herrera-Viedma E, Cobo M (2017) Towards taming variability models in the wild. FAIA 297:454–465. CrossRefGoogle Scholar
  84. 111.
    Ferreira J, Vergilio S, Quinaia M (2017a) Software product line testing based on feature model mutation. IJSEKE 27(5):817–839. CrossRefGoogle Scholar
  85. 112.
    Ferreira T, Lima J, Strickler A, Kuk J, Vergilio S, Pozo A (2017b) Hyper-heuristic based product selection for software product line testing. IEEECIM 12(2):34–45. CrossRefGoogle Scholar
  86. 113.
    Filho JBF, Barais O, Acher M, Le Noir J, Legay A, Baudry B (2014) Generating counterexamples of model-based software product lines. STTT 17(5):585–600. CrossRefGoogle Scholar
  87. 114.
    Finkel R, O’Sullivan B (2011) Reasoning about conditional constraint specification problems and feature models. AIEDAM 25(2):163–174. CrossRefGoogle Scholar
  88. 115.
    Font J, Arcega L, Haugen O, Cetina C (2017) Leveraging variability modeling to address metamodel revisions in model-based software product lines. CLSS 48:20–38. CrossRefGoogle Scholar
  89. 116.
    Galindo J, Acher M, Tirado J, Vidal C, Baudry B, Benavides D (2016) Exploiting the enumeration of all feature model configurations: A new perspective with distributed computing. In: SPLC, vol 16-23-September-2016, pp 74–78.
  90. 117.
    Galindo JA, Turner H, Benavides D, White J (2014) Testing variability-intensive systems using automated analysis: an application to android. SQJ. CrossRefGoogle Scholar
  91. 118.
    Galindo Je, Dhungana D, Rabiser R, Benavides D, Botterweck G, Grünbacher P (2015) Supporting distributed product configuration by integrating heterogeneous variability modeling approaches. IST 62(1):78–100. CrossRefGoogle Scholar
  92. 119.
    García-Galán J, Pasquale L, Trinidad P, Ruiz-Cortés A (2016) User-centric adaptation analysis of multi-tenant services. TAAS. CrossRefGoogle Scholar
  93. 120.
    García-Galán J, García J, Trinidad P, Fernández P (2017) Modelling and analysing highly-configurable services. In: SPLC, vol 1, pp 114–122.
  94. 121.
    Ghanam Y, Maurer F (2010) Linking feature models to code artifacts using executable acceptance tests. In: SPLC, vol 6287 LNCS, pp 211–225.
  95. 122.
    Gheyi R, Massoni T, Borba P (2011) Automatically checking feature model refactorings. JUCS 17(5):684–711zbMATHGoogle Scholar
  96. 123.
    Guo J, White J, Wang G, Li J, Wang Y (2011) A genetic algorithm for optimized feature selection with resource constraints in software product lines. JSS 84(12):2208–2221. CrossRefGoogle Scholar
  97. 124.
    Guo J, Wang Y, Trinidad P, Benavides D (2012) Consistency maintenance for evolving feature models. ESA 39(5):4987–4998. CrossRefGoogle Scholar
  98. 125.
    Guo J, Zulkoski E, Olaechea R, Rayside D (2014) Scaling exact multi-objective combinatorial optimization by parallelization. In: ASE.
  99. 126.
    Hariri N, Castro-Herrera C, Mirakhorli M, Cleland-Huang J, Mobasher B (2013) Supporting domain analysis through mining and recommending features from online product listings. TSE 39(12):1736–1752. CrossRefGoogle Scholar
  100. 127.
    Haslinger EN, Lopez-Herrejon RE, Egyed A (2013) On extracting feature models from sets of valid feature combinations. In: FASE. Springer, pp 53–67.
  101. 128.
    Heider W, Rabiser R, Grünbacher P (2012) Facilitating the evolution of products in product line engineering by capturing and replaying configuration decisions. STTT 14(5):613–630. CrossRefGoogle Scholar
  102. 129.
    Henard C, Papadakis M, Perrouin G, Klein J, Le Traon Y (2013a) Assessing software product line testing via model-based mutation: An application to similarity testing. In: ICSTW. IEEE, pp 188–197.
  103. 130.
    Henard C, Papadakis M, Perrouin G, Klein J, Le Traon Y (2013b) Multi-objective test generation for software product lines. In: SPLC, pp 62–71.
  104. 131.
    Henard C, Papadakis M, Perrouin G, Klein J, Le Traon Y (2013c) Towards automated testing and fixing of re-engineered feature models. In: ICSE, pp 1245–1248.
  105. 132.
    Henard C, Papadakis M, Perrouin G, Klein J, Heymans P, Traon Y (2014) Bypassing the combinatorial explosion: using similarity to generate and prioritize t-wise test configurations for software product lines. TSE 40(7):650–670. CrossRefGoogle Scholar
  106. 133.
    Henard C, Papadakis M, Harman M, Le Traon Y (2015) Combining multi-objective search and constraint solving for configuring large software product lines. In: ICSE. IEEE, vol 1, pp 517–528.
  107. 134.
    Heradio R, Perez-Morago H, Fernandez-Amoros D, Cabrerizo F, Herrera-Viedma E (2015) A science mapping analysis of the literature on software product lines. CCIS 532:242–251. CrossRefGoogle Scholar
  108. 135.
    Heradio R, Perez-Morago H, Alférez M, Fernandez-Amoros D, Alférez GH (2016) Augmenting measure sensitivity to detect essential, dispensable and highly incompatible features in mass customization. EJOR 248(3):1066–1077. MathSciNetzbMATHCrossRefGoogle Scholar
  109. 136.
    Heymans P, Boucher Q, Classen A, Bourdoux A, Demonceau L (2012) A code tagging approach to software product line development. STTT 14(5):553–566. CrossRefGoogle Scholar
  110. 137.
    Hidaka S, Tisi M, Cabot J, Hu Z (2016) Feature-based classification of bidirectional transformation approaches. SOSYM 15(3):907–928. CrossRefGoogle Scholar
  111. 138.
    Hierons R, Li M, Liu X, Segura S, Zheng W (2016) Sip: Optimal product selection from feature models using many-objective evolutionary optimization. TOSEM. CrossRefGoogle Scholar
  112. 139.
    Hu J, Wang Q (2016) Extensions and evolution analysis method for software feature models. JS 27(5):1212–1229. MathSciNetCrossRefGoogle Scholar
  113. 140.
    Hubaux A, Heymans Pb, Schobbens PY, Deridder D, Abbasi E (2013) Supporting multiple perspectives in feature-based configuration. SOSYM 12(3):641–663. CrossRefGoogle Scholar
  114. 141.
    Javed M (2014) Towards the maturity model for feature oriented domain analysis. CES 4(3):170Google Scholar
  115. 142.
    Jézéquel JM (2012) Model-driven engineering for software product lines. ISRN 2012Google Scholar
  116. 143.
    Johansen MF, Haugen Ø, Fleurey F (2012) An algorithm for generating t-wise covering arrays from large feature models. In: SPLC. ACM, pp 46–55.
  117. 144.
    Kang (2010) Foda: Twenty years of perspective on feature modeling. In: VAMOSGoogle Scholar
  118. 145.
    Karataş A, Oǧuztüzün H, Doǧru A (2010) Mapping extended feature models to constraint logic programming over finite domains. In: SPLC, vol 6287 LNCS, pp 286–299.
  119. 146.
    Karatas A, Oguztüzün H, Dogru A (2013) From extended feature models to constraint logic programming. SCP.
  120. 147.
    Karatas AS, Oguztüzün H (2016) Attribute-based variability in feature models. REJ 21(2):185–208. CrossRefGoogle Scholar
  121. 148.
    Kastner C, Dreiling A, Ostermann K (2014) Variability mining: consistent semi-automatic detection of product-line features. TSE 40(1):67–82. CrossRefGoogle Scholar
  122. 149.
    Khoshnevis S, Shams F (2017) Automating identification of services and their variability for product lines using nsga-ii. FCS 11(3):444–464. CrossRefGoogle Scholar
  123. 150.
    Kim CHP, Marinov D, Khurshid S, Batory D, Souto S, Barros P, d’Amorim M (2013) Splat: lightweight dynamic analysis for reducing combinatorics in testing configurable systems. In: ESEC/FSE. ACM, pp 257–267.
  124. 151.
    Kolesnikov SS, Apel S, Siegmund N, Sobernig S, Kästner C, Senkaya S (2013) Predicting quality attributes of software product lines using software and network measures and sampling. In: VAMOS, ACM, p 6.
  125. 152.
    Kowal M, Ananieva S, Thüm T, Schaefer I (2017) Supporting the development of interdisciplinary product lines in the manufacturing domain. IFAC 50(1):4336–4341. CrossRefGoogle Scholar
  126. 153.
    Leite A, Alves V, Rodrigues G, Tadonki C, Eisenbeis C, Melo A (2017) Dohko: an autonomic system for provision, configuration, and management of inter-cloud environments based on a software product line engineering method. UCCJournal 20(3):1951–1976. CrossRefGoogle Scholar
  127. 154.
    Lian XL, Zhang L (2017) Multi-objective optimization algorithm for feature selection in software product lines. IndianST 28(10):2548–2563. CrossRefGoogle Scholar
  128. 155.
    Liang J, Ganesh V, Czarnecki K, Raman V (2015) Sat-based analysis of large real-world feature models is easy. In: SPLC, vol 20-24-July-2015, pp 91–100.
  129. 156.
    Liebig J, von Rhein A, Kästner C, Apel S, Dörre J, Lengauer C (2013) Scalable analysis of variable software. In: ESEC/FSE. ACM, pp 81–91.
  130. 157.
    Linsbauer L, Lopez-Herrejon R, Egyed A (2017) Variability extraction and modeling for product variants. SOSYM 16(4):1179–1199. CrossRefGoogle Scholar
  131. 158.
    Liu Y, Lai K, Dai G, Yuen M (2010) A semantic feature model in concurrent engineering. TASE. CrossRefGoogle Scholar
  132. 159.
    Lochau M, Oster S, Goltz U, Schürr A (2012a) Model-based pairwise testing for feature interaction coverage in software product line engineering. SQJ 20(3–4):567–604. CrossRefGoogle Scholar
  133. 160.
    Lochau M, Schaefer I, Kamischke J, Lity S (2012b) Incremental model-based testing of delta-oriented software product lines. In: TAP. Springer, pp 67–82.
  134. 161.
    Lochau M, Bürdek J, Hölzle S, Schürr A (2017) Specification and automated validation of staged reconfiguration processes for dynamic software product lines. SOSYM 16(1):125–152. CrossRefGoogle Scholar
  135. 162.
    Lopez-Herrejon R, Montalvillo-Mendizabal L, Egyed A (2011) From requirements to features: an exploratory study of feature-oriented refactoring. In: SPLC, pp 181–190.
  136. 163.
    Lopez-Herrejon R, Linsbauer L, Galindo J, Parejo J, Benavides D, Segura S, Egyed A (2015) An assessment of search-based techniques for reverse engineering feature models. JSS 103:353–369. CrossRefGoogle Scholar
  137. 164.
    Lopez-Herrejon R, Ferrer J, Chicano F, Egyed A, Alba E (2016) Evolutionary computation for software product line testing: an overview and open challenges. SCI 617:59–87. CrossRefGoogle Scholar
  138. 165.
    Lopez-Herrejon RE, Egyed A (2012) Towards fixing inconsistencies in models with variability. In: VAMOS. ACM, pp 93–100.
  139. 166.
    Lopez-Herrejon RE, Chicano F, Ferrer J, Egyed A, Alba E (2013) Multi-objective optimal test suite computation for software product line pairwise testing. In: ICSM. IEEE, pp 404–407.
  140. 167.
    Lotufo R, She S, Berger T, Czarnecki K, Wąsowski A (2010) Evolution of the linux kernel variability model. In: SPLC. Springer, pp 136–150.
  141. 168.
    Markiegi U, Arrieta A, Sagardui G, Etxeberria L (2017) Search-based product line fault detection allocating test cases iteratively. In: SPLC, vol 1, pp 123–132.
  142. 169.
    Mauro J, Nieke M, Seidl C, Yu I (2016) Context aware reconfiguration in software product lines. In: VAMOS, vol 27-29-January-2016, pp 41–48.
  143. 170.
    Mazo R, Grünbacher P, Heider W, Rabiser R, Salinesi C, Diaz D (2011) Using constraint programming to verify dopler variability models. In: VAMOS, ACM, pp 97–103.
  144. 171.
    Mazo R, Salinesi C, Diaz D, Djebbi O, Lora-Michiels A (2012) Constraints: the heart of domain and application engineering in the product lines engineering strategy. IJISMD 3(2):33–68. CrossRefGoogle Scholar
  145. 172.
    Meinicke J, Thüm T, Schröter R, Krieter S, Benduhn F, Saake G, Leich T (2016) Featureide: taming the preprocessor wilderness. In: ICSE. IEEE, pp 629–632.
  146. 173.
    Mendonca M, Cowan D (2010) Decision-making coordination and efficient reasoning techniques for feature-based configuration. SCP 75(5):311–332. MathSciNetzbMATHCrossRefGoogle Scholar
  147. 174.
    Merschen D, Polzer A, Botterweck G, Kowalewski S (2011) Experiences of applying model-based analysis to support the development of automotive software product lines. In: VAMOS. ACM, pp 141–150,
  148. 175.
    Michel R, Classen A, Hubaux A, Boucher Q (2011) A formal semantics for feature cardinalities in feature diagrams. In: VAMOS. ACM, pp 82–89.
  149. 176.
    Modrak V, Soltysova Z, Modrak J, Behunova A (2017) Reducing impact of negative complexity on sustainability of mass customization. Sustainability. CrossRefGoogle Scholar
  150. 177.
    Mohalik S, Ramesh S, Millo JV, Krishna SN, Narwane GK (2012) Tracing spls precisely and efficiently. In: SPLC. ACM, pp 186–195.
  151. 178.
    Murguzur A, De Carlos X, Trujillo S, Sagardui G (2014) Context-aware staged configuration of process variants@ runtime. In: CAISE. Springer, pp 241–255.
  152. 179.
    Mussbacher G, Araújo J, Moreira A, Amyot D (2012) Aourn-based modeling and analysis of software product lines. SQJ 20(3–4):645–687. CrossRefGoogle Scholar
  153. 180.
    Nadi S, Berger T, Kästner C, Czarnecki K (2014) Mining configuration constraints: static analyses and empirical results. In: ICSE. ACM, pp 140–151.
  154. 181.
    Nadi S, Berger T, Kästner C, Czarnecki K (2015) Where do configuration constraints stem from? an extraction approach and an empirical study. TSE 41(8):820–841. CrossRefGoogle Scholar
  155. 182.
    Narwane G, Galindo J, Krishna S, Benavides D, Millo JV, Ramesh S (2016) Traceability analyses between features and assets in software product lines. Entropy. CrossRefGoogle Scholar
  156. 183.
    Nešić D, Nyberg M (2016) Multi-view modeling and automated analysis of product line variability in systems engineering. In: SPLC, vol 16-23-September-2016, pp 287–296.
  157. 184.
    Novak M, Magdalenić I, Radošević D (2016) Common metamodel of component diagram and feature diagram in generative programming. JCS 12(10):517–526. CrossRefGoogle Scholar
  158. 185.
    Ochoa L, Pereira J, González-Rojas O, Castro H, Saake G (2017) A survey on scalability and performance concerns in extended product lines configuration. In: VAMOS, pp 5–12.
  159. 186.
    Oster S, Markert F, Ritter P (2010) Automated incremental pairwise testing of software product lines. In: SPLC, vol 6287 LNCS, pp 196–210.
  160. 187.
    Oster S, Zorcic I, Markert F, Lochau M (2011) Moso-polite: tool support for pairwise and model-based software product line testing. In: VAMOS. ACM. pp 79–82,
  161. 188.
    Parejo J, Sánchez A, Segura S, Ruiz-Cortés A, Lopez-Herrejon R, Egyed A (2016) Multi-objective test case prioritization in highly configurable systems: a case study. JSS 122:287–310. CrossRefGoogle Scholar
  162. 189.
    Pascual G, Lopez-Herrejon R, Pinto M, Fuentes L, Egyed A (2015) Applying multiobjective evolutionary algorithms to dynamic software product lines for reconfiguring mobile applications. JSS 103:392–411. CrossRefGoogle Scholar
  163. 190.
    Pascual GG, Pinto M, Fuentes L (2013) Run-time adaptation of mobile applications using genetic algorithms. In: ICSE. IEEE Press, pp 73–82.
  164. 191.
    Paškevičius P, Damaševičius R, Karčiauskas E, Marcinkevičius R (2012) Automatic extraction of features and generation of feature models from java programs. ITC 41(4):376–384. CrossRefGoogle Scholar
  165. 192.
    Paskevicius P, Damasevicius R, Štuikys V (2012) Change impact analysis of feature models. JKSU 319 CCIS:108–122.
  166. 193.
    Passos L, Czarnecki K, Apel S, Wąsowski A, Kästner C, Guo J (2013) Feature-oriented software evolution. In: VAMOS. ACM, p 17.
  167. 194.
    Pereira J, Constantino K, Figueiredo E, Saake G (2016) Quantitative and qualitative empirical analysis of three feature modeling tools. CCIS 703:66–88. CrossRefGoogle Scholar
  168. 195.
    Perez-Morago H, Heradio R, Fernandez-Amoros D, Bean R, Cerrada C (2015) Efficient identification of core and dead features in variability models. ACCESS 3:2333–2340. CrossRefGoogle Scholar
  169. 196.
    Perrouin G, Oster S, Sen S, Klein J, Baudry B, le Traon Y (2012) Pairwise testing for software product lines: comparison of two approaches. SQJ 20(3–4):605–643. CrossRefGoogle Scholar
  170. 197.
    Pleuss A, Botterweck G (2012) Visualization of variability and configuration options. STTT 14(5):497–510. CrossRefGoogle Scholar
  171. 198.
    Pleuss A, Botterweck G, Dhungana D (2010) Integrating automated product derivation and individual user interface design. In: VAMOSGoogle Scholar
  172. 199.
    Pleuss A, Rabiser R, Botterweck G (2011) Visualization techniques for application in interactive product configuration. In: SPLC. ACM, p 22.
  173. 200.
    Pleuss A, Botterweck G, Dhungana D, Polzer A, Kowalewski S (2012) Model-driven support for product line evolution on feature level. JSS 85(10):2261–2274. CrossRefGoogle Scholar
  174. 201.
    Pohl R, Lauenroth K, Pohl K (2011) A performance comparison of contemporary algorithmic approaches for automated analysis operations on feature models. In: ASE, pp 313–322.
  175. 202.
    Pohl R, Stricker V, Pohl K (2013) Measuring the structural complexity of feature models. In: ASE. IEEE, pp 454–464.
  176. 203.
    Quinton C, Romero D, Duchien L (2013) Cardinality-based feature models with constraints: a pragmatic approach. In: SPLC. ACM, pp 162–166.
  177. 204.
    Quinton C, Romero D, Duchien L (2014) Automated selection and configuration of cloud environments using software product lines principles. In: CLOUD. IEEE, pp 144–151.
  178. 205.
    Quinton C, Rabiser R, Vierhauser M, Grünbacher P, Baresi L (2015) Evolution in dynamic software product lines: Challenges and perspectives. In: SPLC, vol 20-24-July-2015, pp 126–130.
  179. 206.
    Rauber T, Boldt FdA (2015) Heterogeneous feature models and feature selection applied to bearing fault diagnosis. TIE. CrossRefGoogle Scholar
  180. 207.
    Rincón L, Giraldo GL, Mazo R, Salinesi C (2014) An ontological rule-based approach for analyzing dead and false optional features in feature models. ENTCS 302:111–132. CrossRefGoogle Scholar
  181. 208.
    Ripon S, Rahman M, Ferdous J, Hossain M (2016) Verification of spl feature model by using bayesian network. IndianST.
  182. 209.
    Roos-Frantz F, Benavides D, Ruiz-Cortés A, Heuer A, Lauenroth K (2012) Quality-aware analysis in product line engineering with the orthogonal variability model. SQJ 20(3–4):519–565. CrossRefGoogle Scholar
  183. 210.
    Rosenmüller M, Siegmund N, Thüm T, Saake G (2011) Multi-dimensional variability modeling. In: VAMOS, pp 11–20.
  184. 211.
    Saeed M, Saleh F, Al-Insaif S, El-Attar M (2016) Empirical validating the cognitive effectiveness of a new feature diagrams visual syntax. IST 71:1–26. CrossRefGoogle Scholar
  185. 212.
    Sanchez A, Segura S, Ruiz-Cortes A (2014) A comparison of test case prioritization criteria for software product lines. In: ICST, pp 41–50.
  186. 213.
    Sánchez AB, Segura S, Ruiz-Cortés A (2014) The drupal framework: a case study to evaluate variability testing techniques. In: VAMOS, ACM, p 11.
  187. 214.
    Sánchez AB, Segura S, Parejo JA, Ruiz-Cortés A (2015) Variability testing in the wild: the drupal case study. SOSYM. CrossRefGoogle Scholar
  188. 215.
    Sannier N, Acher M, Baudry B (2013) From comparison matrix to variability model: The wikipedia case study. In: ASE, pp 580–585.
  189. 216.
    Sayyad A, Ingram J, Menzies T, Ammar H (2013) Scalable product line configuration: A straw to break the camel’s back. In: ASE, pp 465–474.
  190. 217.
    Schaefer I (2010) Variability modelling for model-driven development of software product lines. In: VAMOS, vol 10, pp 85–92Google Scholar
  191. 218.
    Schmid K, Rabiser R, Grünbacher P (2011) A comparison of decision modeling approaches in product lines. In: VAMOS, pp 119–126.
  192. 219.
    Schnabel T, Weckesser M, Kluge R, Lochau M, Schürr A (2016) Cardygan: Tool support for cardinality-based feature models. In: VAMOS, vol 27-29-January-2016, pp 33–40.
  193. 220.
    Schroeter J, Cech S, Götz S, Wilke C, Aßmann U (2012a) Towards modeling a variable architecture for multi-tenant saas-applications. In: VAMOS. ACM, pp 111–120.
  194. 221.
    Schroeter J, Mucha P, Muth M, Jugel K, Lochau M (2012b) Dynamic configuration management of cloud-based applications. In: SPLC. ACM, pp 171–178.
  195. 222.
    Schröter R, Thüm T, Siegmund N, Saake G (2013) Automated analysis of dependent feature models. In: VAMOS. ACM, p 9.
  196. 223.
    Schröter R, Siegmund N, Thüm T, Saake G (2014) Feature-context interfaces: tailored programming interfaces for software product lines. In: SPLC. ACM, pp 102–111.
  197. 224.
    Schröter R, Krieter S, Thüm T, Benduhn F, Saake G (2016) Feature-model interfaces: The highway to compositional analyses of highly-configurable systems. In: ICSE. IEEE Computer Society, pp 667–678.
  198. 225.
    Schubanz M, Pleuss A, Botterweck G, Lewerentz C (2012) Modeling rationale over time to support product line evolution planning. In: VAMOS, pp 193–199.
  199. 226.
    Segura S, Benavides D, Ruiz-Cortés A (2011a) Functional testing of feature model analysis tools: a test suite. IET 5(1):70–82. CrossRefGoogle Scholar
  200. 227.
    Segura S, Hierons R, Benavides D, Ruiz-Cortés A (2011b) Automated metamorphic testing on the analyses of feature models. IST 53(3):245–258. CrossRefGoogle Scholar
  201. 228.
    Segura S, Galindo JA, Benavides D, Parejo JA, Ruiz-Cortés A (2012) Betty: benchmarking and testing on the automated analysis of feature models. In: VAMOS. ACM, pp 63–71.
  202. 229.
    Segura S, Parejo J, Hierons R, Benavides D, Ruiz-Cortés A (2014) Automated generation of computationally hard feature models using evolutionary algorithms. ESA 41(8):3975–3992. CrossRefGoogle Scholar
  203. 230.
    Segura S, Durán A, Sánchez A (2015) Automated metamorphic testing of variability analysis tools. STVR. CrossRefGoogle Scholar
  204. 231.
    Seidl C, Schaefer I, Assmann U (2014) Capturing variability in space and time with hyper feature models. In: VAMOS. ACM, p 6.
  205. 232.
    She S, Lotufo R, Berger T, Wasowski A, Czarnecki K (2010) The variability model of the linux kernel. In: VAMOS, vol 10, pp 45–51Google Scholar
  206. 233.
    She S, Lotufo R, Berger T, Wąsowski A, Czarnecki K (2011) Reverse engineering feature models. In: ICSE, pp 461–470.
  207. 234.
    Siegmund N, Kolesnikov SS, Kästner C, Apel S, Batory D, Rosenmüller M, Saake G (2012) Predicting performance via automated feature-interaction detection. In: ICSE. IEEE Press, pp 167–177.
  208. 235.
    Soltani S, Asadi M, Hatala M, Gašević D, Bagheri E (2011) Automated planning for feature model configuration based on stakeholders’ business concerns. In: ASE, pp 536–539.
  209. 236.
    Soltani S, Asadi M, Gašević D, Hatala M, Bagheri E (2012) Automated planning for feature model configuration based on functional and non-functional requirements. In: SPLC, ACM, pp 56–65.
  210. 237.
    Stein J, Nunes I, Cirilo E (2014) Preference-based feature model configuration with multiple stakeholders. In: SPLC. ACM, pp 132–141.
  211. 238.
    Strickler A, Prado Lima J, Vergilio S, Pozo A (2016) Deriving products for variability test of feature models with a hyper-heuristic approach. ASCJ 49:1232–1242. CrossRefGoogle Scholar
  212. 239.
    Tanhaei M, Habibi J, Mirian-Hosseinabadi SH (2016) Automating feature model refactoring: a model transformation approach. IST 80:138–157. CrossRefGoogle Scholar
  213. 240.
    Tawhid R, Petriu D (2011) Automatic derivation of a product performance model from a software product line model. In: SPLC, pp 80–89.
  214. 241.
    Teixeira L, Borba P, Gheyi R (2013) Safe composition of configuration knowledge-based software product lines. JSS 86(4):1038–1053. CrossRefGoogle Scholar
  215. 242.
    Ter Beek M, Fantechi A, Gnesi S (2015) Applying the product lines paradigm to the quantitative analysis of collective adaptive systems. In: SPLC, vol 20-24-July-2015, pp 321–326.
  216. 243.
    Thüm T, Kästner C, Erdweg S, Siegmund N (2011) Abstract features in feature modeling. In: SPLC, pp 191–200.
  217. 244.
    Thüm T, Apel S, Kästner C, Schaefer I, Saake G (2014a) A classification and survey of analysis strategies for software product lines. ACMCS. CrossRefGoogle Scholar
  218. 245.
    Thüm T, Kästner C, Benduhn F, Meinicke J, Saake G, Leich T (2014b) Featureide: an extensible framework for feature-oriented software development. SCP 79:70–85. CrossRefGoogle Scholar
  219. 246.
    Tërnava X, Collet P (2017) Early consistency checking between specification and implementation variabilities. In: SPLC, vol 1, pp 29–38.
  220. 247.
    Štuikys V, Burbaitė R, Bespalova K, Ziberkas G (2016) Model-driven processes and tools to design robot-based generative learning objects for computer science education. SCP 129:48–71. CrossRefGoogle Scholar
  221. 248.
    Vierhauser M, Grünbacher P, Egyed A, Rabiser R, Heider W (2010) Flexible and scalable consistency checking on product line variability models. In: ASE. ACM, pp 63–72.
  222. 249.
    Vogel-Heuser B, Fay A, Schaefer I, Tichy M (2015) Evolution of software in automated production systems: challenges and research directions. JSS 110:54–84. CrossRefGoogle Scholar
  223. 250.
    Von Rhein A, Apel S, Kästner C, Thüm T, Schaefer I (2013) The pla model: on the combination of product-line analyses. In: VAMOS. ACM, p 14.
  224. 251.
    Von Rhein A, Grebhahn A, Apel S, Siegmund N, Beyer D, Berger T (2015) Presence-condition simplification in highly configurable systems. In: ICSE vol 1, pp 178–188.
  225. 252.
    Walter R, Felfernig A, Küchlin W (2017) Constraint-based and sat-based diagnosis of automotive configuration problems. JIIS 49(1):87–118. CrossRefGoogle Scholar
  226. 253.
    Wang S, Ali S, Gotlieb A (2013) Minimizing test suites in software product lines using weight-based genetic algorithms. In: GECCO. ACM, pp 1493–1500.
  227. 254.
    Wang S, Buchmann D, Ali S, Gotlieb A, Pradhan D, Liaaen M (2014) Multi-objective test prioritization in software product line testing: an industrial case study. In: SPLC. ACM, pp 32–41.
  228. 255.
    Wang S, Ali S, Gotlieb A, Liaaen M (2016) A systematic test case selection methodology for product lines: results and insights from an industrial case study. ESE 21(4):1586–1622. CrossRefGoogle Scholar
  229. 256.
    Wang S, Ali S, Gotlieb A, Liaaen M (2017) Automated product line test case selection: industrial case study and controlled experiment. SOSYM 16(2):417–441. CrossRefGoogle Scholar
  230. 257.
    Wang Sb, Ali S, Gotlieb A (2015) Cost-effective test suite minimization in product lines using search techniques. JSS 103:370–391. CrossRefGoogle Scholar
  231. 258.
    White J, Benavides D, Schmidt D, Trinidad P, Dougherty B, Ruiz-Cortes A (2010) Automated diagnosis of feature model configurations. JSS 83(7):1094–1107. CrossRefGoogle Scholar
  232. 259.
    White J, Galindo J, Saxena T, Dougherty B, Benavides D, Schmidt D (2014) Evolving feature model configurations in software product lines. JSS 87(1):119–136. CrossRefGoogle Scholar
  233. 260.
    Wittern E, Zirpins C (2016) Service feature modeling: modeling and participatory ranking of service design alternatives. SOSYM 15(2):553–578. CrossRefGoogle Scholar
  234. 261.
    Xue Y, Zhong J, Tan T, Liu Y, Cai W, Chen M, Sun J (2016) Ibed: combining ibea and de for optimal feature selection in software product line engineering. ASCJ 49:1215–1231. CrossRefGoogle Scholar
  235. 262.
    Yu W, Zhang W, Zhao H, Jin Z (2014) Tdl: a transformation description language from feature model to use case for automated use case derivation. In: SPLC. ACM, pp 187–196.
  236. 263.
    Zaid L, Kleinermann F, De Troyer O (2011) Feature assembly framework: Towards scalable and reusable feature models. In: VAMOS, pp 1–9.
  237. 264.
    Zhan Z, Luo W, Guo Z, Liu Y (2017a) Feature selection optimization based on atomic set and genetic algorithm in software product line. AISC 686:93–100. CrossRefGoogle Scholar
  238. 265.
    Zhan Z, Zhan Y, Huang M, Liu Y (2017b) Product configuration based on feature model. AISC 686:101–106. CrossRefGoogle Scholar
  239. 266.
    Zhang G, Ye H, Lin Y (2014) Quality attribute modeling and quality aware product configuration in software product lines. SQJ 22(3):365–401. CrossRefGoogle Scholar
  240. 267.
    Zhou F, Jiao J, Yang X, Lei B (2017) Augmenting feature model through customer preference mining by hybrid sentiment analysis. ESA 89:306–317. CrossRefGoogle Scholar
  241. 268.
    Zhu H, Wu L, Huang K, Zhou Z (2016) Research on methods for discovering and selecting cloud infrastructure services based on feature modeling. MPE 2016.
  242. 269.
    Ziadi T, Frias L, da Silva MAA, Ziane M (2012) Feature identification from the source code of product variants. In: ECSMR. IEEE, pp 417–422.

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • José A. Galindo
    • 1
    Email author
  • David Benavides
    • 1
  • Pablo Trinidad
    • 1
  • Antonio-Manuel Gutiérrez-Fernández
    • 1
  • Antonio Ruiz-Cortés
    • 1
  1. 1.Dept. Lenguajes y Sistemas InformáticosUniversity of SevilleSevilleSpain

Personalised recommendations