Advertisement

Computing

pp 1–47 | Cite as

Automated analysis of feature models: Quo vadis?

  • José A. Galindo
  • David Benavides
  • Pablo Trinidad
  • Antonio-Manuel Gutiérrez-Fernández
  • Antonio Ruiz-Cortés
Article

Abstract

Feature models have been used since the 90s to describe software product lines as a way of reusing common parts in a family of software systems. In 2010, a systematic literature review was published summarizing the advances and settling the basis of the area of automated analysis of feature models (AAFM). From then on, different studies have applied the AAFM in different domains. In this paper, we provide an overview of the evolution of this field since 2010 by performing a systematic mapping study considering 423 primary sources. We found six different variability facets where the AAFM is being applied that define the tendencies: product configuration and derivation; testing and evolution; reverse engineering; multi-model variability-analysis; variability modelling and variability-intensive systems. We also confirmed that there is a lack of industrial evidence in most of the cases. Finally, we present where and when the papers have been published and who are the authors and institutions that are contributing to the field. We observed that the maturity is proven by the increment in the number of journals published along the years as well as the diversity of conferences and workshops where papers are published. We also suggest some synergies with other areas such as cloud or mobile computing among others that can motivate further research in the future.

Keywords

Software product lines Automated analysis Feature models Variability-intensive systems 

Mathematics Subject Classification

68T35 

Notes

Acknowledgements

This work was supported, in part, by the European Commission (FEDER), by the Spanish government under BELi (TIN2015-70560-R) project and by the Andalusian government under the COPAS (TIC-1867) project. You can find all the material used in this paper in the website https://isa-group.github.io/aafm-quo-vadis/.

References

  1. 1.
    Acher M, Collet P, Lahire P, France RB (2013) FAMILIAR: a domain-specific language for large scale management of feature models. Sci Comput Program (SCP) 78(6):657–681CrossRefGoogle Scholar
  2. 2.
    Alférez M, Acher M, Galindo JA, Baudry B, Benavides D (2018) Modeling variability in the video domain: language and experience report. Softw Qual J.  https://doi.org/10.1007/s11219-017-9400-8 CrossRefGoogle Scholar
  3. 3.
    Batory D, Benavides D, Ruiz-Cortes A (2006) Automated analysis of feature models: challenges ahead. Commun ACM 49(12):45–47.  https://doi.org/10.1145/1183236.1183264 CrossRefGoogle Scholar
  4. 4.
    Benavides D, Segura S, Ruiz-Cortés A (2010) Automated analysis of feature models 20 years later. Inf Syst 35(6):615–636CrossRefGoogle Scholar
  5. 5.
    Benavides D, Trinidad P, Cortés AR, Segura S (2013) FaMa, Springer Berlin Heidelberg, chap FaMa, pp 163–171.  https://doi.org/10.1007/978-3-642-36583-6-11
  6. 6.
    Capilla R (2013) Variability realization techniques and product derivation. In: Systems and software variability management, Springer, pp 87–99Google Scholar
  7. 7.
    Clements P, Northrop L (2002) Software product lines. Addison-Wesley, BostonGoogle Scholar
  8. 8.
    Durán A, Benavides D, Segura S, Trinidad P, Ruiz-Cortés A (in press) FLAME: a formal framework for the automated analysis of software product lines validated by automated specification testing. Softw Syst Model.  https://doi.org/10.1007/s10270-015-0503-z
  9. 9.
    Engström E, Runeson P (2011) Software product line testing—a systematic mapping study. Inf Softw Technol 53(1):2–13.  https://doi.org/10.1016/j.infsof.2010.05.011 CrossRefGoogle Scholar
  10. 10.
    Galindo J, Turner H, Benavides D, White J (2014) Testing variability-intensive systems using automated analysis: an application to android. Softw Qual J.  https://doi.org/10.1007/s11219-014-9258-y CrossRefGoogle Scholar
  11. 11.
    Grant MJ, Booth A (2009) A typology of reviews: an analysis of 14 review types and associated methodologies. Health Inf Libr J 26(2):91–108CrossRefGoogle Scholar
  12. 12.
    Heradio R, Perez-Morago H, Fernandez-Amoros D, Cabrerizo FJ, Herrera-Viedma E (2015) A science mapping analysis of the literature on software product lines. In: Fujita H, Guizzi G (eds) Intelligent software methodologies, tools and techniques, communications in computer and information science. Springer International Publishing, Berlin, pp 242–251.  https://doi.org/10.1007/978-3-319-22689-718 CrossRefGoogle Scholar
  13. 13.
    Heradio R, Perez-Morago H, Fernandez-Amoros D, Cabrerizo FJ, Herrera-Viedma E (2016) A bibliometric analysis of 20 years of research on software product lines. Inf Softw Technol 72:1–15.  https://doi.org/10.1016/j.infsof.2015.11.004 CrossRefGoogle Scholar
  14. 14.
    Jia C, Cai Y, Yu YT, Tse TH (2016) 5W + 1H pattern: A perspective of systematic mapping studies and a case study on cloud software testing. J Syst Softw 116:206–219.  https://doi.org/10.1016/j.jss.2015.01.058 CrossRefGoogle Scholar
  15. 15.
    Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-oriented domain analysis (foda) feasibility study. Tech. rep., DTIC DocumentGoogle Scholar
  16. 16.
    Kipling R (1902) Just so stories. MacMillan, LondonGoogle Scholar
  17. 17.
    Kitchenham B, Brereton OP, Budgen D, Turner M, Bailey J, Linkman S (2009) Systematic literature reviews in software engineering—a systematic literature review. Inf Softw Technol 51(1):7–15.  https://doi.org/10.1016/j.infsof.2008.09.009 (special Section—Most Cited Articles in 2002 and Regular Research Papers)CrossRefGoogle Scholar
  18. 18.
    Laguna MA, Crespo Y (2013) A systematic mapping study on software product line evolution: from legacy system reengineering to product line refactoring. Sci Comput Program 78(8):1010–1034.  https://doi.org/10.1016/j.scico.2012.05.003 CrossRefGoogle Scholar
  19. 19.
    Lopez-Herrejon RE, Linsbauer L, Egyed A (2015) A systematic mapping study of search-based software engineering for software product lines. Inf Softw Technol 61:33–51.  https://doi.org/10.1016/j.infsof.2015.01.008 CrossRefGoogle Scholar
  20. 20.
    Méndez-Acuña D, Galindo JA, Degueule T, Combemale B, Baudry B (2016) Leveraging software product lines engineering in the development of external dsls: a systematic literature review. Comput Lang Syst Struct 46:206–235.  https://doi.org/10.1016/j.cl.2016.09.004 CrossRefGoogle Scholar
  21. 21.
    Mendonca M, Branco M, Cowan D (2009) S.p.l.o.t.: Software product lines online tools. In: Proceedings of the 24th ACM SIGPLAN conference companion on object oriented programming systems languages and applications, ACM, New York, NY, USA, OOPSLA ’09, pp 761–762.  https://doi.org/10.1145/1639950.1640002
  22. 22.
    Montalvillo L, Díaz O (2016) Requirement-driven evolution in software product lines: a systematic mapping study. J Syst Softw 122:110–143.  https://doi.org/10.1016/j.jss.2016.08.053 CrossRefGoogle Scholar
  23. 23.
    da Mota Silveira Neto PA, do Carmo Machado I, McGregor JD, de Almeida ES, de Lemos Meira SR(2011) A systematic mapping study of software product lines testing. Inf Softw Technol 53(5):407–423.  https://doi.org/10.1016/j.infsof.2010.12.003 special Section on Best Papers from XP2010
  24. 24.
    Petersen K, Feldt R, Mujtaba S, Mattsson M (2008a) Systematic mapping studies in software engineering. In: Proceedings of the 12th international conference on evaluation and assessment in software engineering, British Computer Society, Swinton, UK, UK, EASE’08, pp 68–77Google Scholar
  25. 25.
    Petersen K, Feldt R, Mujtaba S, Mattsson M (2008b) Systematic mapping studies in software engineering. In: Proceedings of the 12th international conference on evaluation and assessment in software engineering, BCS Learning & Development Ltd., Swindon, UK, EASE’08, pp 68–77Google Scholar
  26. 26.
    Schobbens P, Heymans P, Trigaux J, Bontemps Y (2007) Generic semantics of feature diagrams. Comput Netw 51(2):456–479.  https://doi.org/10.1016/j.comnet.2006.08.008 zbMATHCrossRefGoogle Scholar
  27. 27.
    Wieringa R, Maiden N, Mead N, Rolland C (2006) Requirements engineering paper classification and evaluation criteria: a proposal and a discussion. Requir Eng 11(1):102–107CrossRefGoogle Scholar

Primary sources

  1. 28.
    Abal I, Brabrand C, Wasowski A (2014) 42 variability bugs in the linux kernel: a qualitative analysis. In: ASE.  https://doi.org/10.1145/2642937.2642990
  2. 29.
    Abele A, Papadopoulos Y, Servat D, Törngren M, Weber M (2010) The cvm framework-a prototype tool for compositional variability management. In: VAMOS, vol 10, pp 101–105Google Scholar
  3. 30.
    Acher M, Collet P, Lahire P, France R (2011) Slicing feature models. In: ASE, pp 424–427.  https://doi.org/10.1109/ASE.2011.6100089
  4. 31.
    Acher M, Cleve A, Perrouin G, Heymans P, Vanbeneden C, Collet P, Lahire P (2012a) On extracting feature models from product descriptions. In: VAMOS, pp 45–54.  https://doi.org/10.1145/2110147.2110153
  5. 32.
    Acher M, Collet P, Gaignard A, Lahire P, Montagnat J, France R (2012b) Composing multiple variability artifacts to assemble coherent workflows. SQJ 20(3–4):689–734.  https://doi.org/10.1007/s11219-011-9170-7 CrossRefGoogle Scholar
  6. 33.
    Acher M, Collet P, Lahire P, France R (2012c) Separation of concerns in feature modeling: support and applications. In: AOSD, pp 1–12.  https://doi.org/10.1145/2162049.2162051
  7. 34.
    Acher M, Baudry B, Heymans P, Cleve A, Hainaut JL (2013a) Support for reverse engineering and maintaining feature models. In: VAMOS, ACM, p 20.  https://doi.org/10.1145/2430502.2430530
  8. 35.
    Acher M, Collet P, Lahire P, France RB (2013b) Familiar: a domain-specific language for large scale management of feature models. SCP 78(6):657–681.  https://doi.org/10.1016/j.scico.2012.12.004 CrossRefGoogle Scholar
  9. 36.
    Acher M, Cleve A, Collet P, Merle P, Duchien L, Lahire P (2014) Extraction and evolution of architectural variability models in plugin-based systems. SOSYM 13(4):1367–1394.  https://doi.org/10.1007/s10270-013-0364-2 CrossRefGoogle Scholar
  10. 37.
    Ajoudanian S, Hosseinabadi SH (2015) Automatic promotional specialization, generalization and analysis of extended feature models with cardinalities in alloy. LAMP 84(5):640–667.  https://doi.org/10.1016/j.jlamp.2014.11.005 MathSciNetCrossRefGoogle Scholar
  11. 38.
    Al-Hajjaji M, Thüm T, Meinicke J, Lochau M, Saake G (2014) Similarity-based prioritization in software product-line testing. In: SPLC, ACM, pp 197–206.  https://doi.org/10.1145/2648511.2648532
  12. 39.
    Andersen N, Czarnecki K, She S, Wąsowski A (2012) Efficient synthesis of feature models. In: SPLC, vol 1, pp 106–115.  https://doi.org/10.1145/2362536.2362553
  13. 40.
    Antkiewicz M, Ba̧k K, Murashkin A, Olaechea R, (2013) Clafer tools for product line engineering. In: SPLC.  https://doi.org/10.1145/2499777.2499779
  14. 41.
    Apel S, Speidel H, Wendler P, Von Rhein A, Beyer D (2011) Detection of feature interactions using feature-aware verification. In: ASE, IEEE computer society, pp 372–375.  https://doi.org/10.1109/ase.2011.6100075
  15. 42.
    Apel S, Von Rhein A, ThüM T, KäStner C (2013) Feature-interaction detection based on feature-based specifications. CNJ 57(12):2399–2409.  https://doi.org/10.1016/j.comnet.2013.02.025 CrossRefGoogle Scholar
  16. 43.
    Arcaini P, Gargantini A, Vavassori P (2015) Generating tests for detecting faults in feature models. In: ICST.  https://doi.org/10.1109/ICST.2015.7102591
  17. 44.
    Arcaini P, Gargantini A, Vavassori P (2017) Automated repairing of variability models. In: SPLC, vol 1, pp 9–18.  https://doi.org/10.1145/3106195.3106206
  18. 45.
    Arrieta A, Sagardui G, Etxeberria L, Zander J (2017) Automatic generation of test system instances for configurable cyber-physical systems. SQJ 25(3):1041–1083.  https://doi.org/10.1007/s11219-016-9341-7 CrossRefGoogle Scholar
  19. 46.
    Asadi M, Mohabbati B, Gröner G, Gasevic D (2014a) Development and validation of customized process models. JSS 96:73–92.  https://doi.org/10.1016/j.jss.2014.05.063 CrossRefGoogle Scholar
  20. 47.
    Asadi M, Soltani S, Gasevic D, Hatala M, Bagheri E (2014b) Toward automated feature model configuration with optimizing non-functional requirements. IST 56(9):1144–1165.  https://doi.org/10.1016/j.infsof.2014.03.005 CrossRefGoogle Scholar
  21. 48.
    Assunção W, Lopez-Herrejon R, Linsbauer L, Vergilio S, Egyed A (2017) Multi-objective reverse engineering of variability-safe feature models based on code dependencies of system variants. ESE 22(4):1763–1794.  https://doi.org/10.1007/s10664-016-9462-4 CrossRefGoogle Scholar
  22. 49.
    Bagheri E, Asadi M, Gasevic D, Soltani S (2010a) Stratified analytic hierarchy process: Prioritization and selection of software features. In: SPLC, vol 6287 LNCS, pp 300–315.  https://doi.org/10.1007/978-3-642-15579-6_21
  23. 50.
    Bagheri E, Di Noia T, Ragone A, Gasevic D (2010b) Configuring software product line feature models based on stakeholders’ soft and hard requirements. In: SPLC. Springer, pp 16–31.  https://doi.org/10.1007/978-3-642-15579-6_2
  24. 51.
    Bagheri E, Noia TD, Gasevic D, Ragone A (2012) Formalizing interactive staged feature model configuration. JSEP 24(4):375–400.  https://doi.org/10.1002/smr.534 CrossRefGoogle Scholar
  25. 52.
    Bagheri Eb, Gasevic D (2011) Assessing the maintainability of software product line feature models using structural metrics. SQJ 19(3):579–612.  https://doi.org/10.1007/s11219-010-9127-2 CrossRefGoogle Scholar
  26. 53.
    Baresi L, Guinea S, Pasquale L (2012) Service-oriented dynamic software product lines. Computer 45(10):42–48.  https://doi.org/10.1109/MC.2012.289 CrossRefGoogle Scholar
  27. 54.
    Bécan G, Behjati R, Gotlieb A, Acher M (2015) Synthesis of attributed feature models from product descriptions. In: SPLC, vol 20-24-July-2015, pp 1–10.  https://doi.org/10.1145/2791060.2791068
  28. 55.
    Bécan G, Acher M, Baudry B, Nasr SB (2015) Breathing ontological knowledge into feature model synthesis: an empirical study. ESE, pp 1–48.  https://doi.org/10.1007/s10664-014-9357-1
  29. 56.
    Beek Mt, Legay A, Lafuente A, Vandin A (2016a) Statistical model checking for product lines. In: ISOLA, vol 9952 LNCS, pp 114–133.  https://doi.org/10.1007/978-3-319-47166-2_8
  30. 57.
    Beek Mt, Reniers M, de Vink E (2016b) Supervisory controller synthesis for product lines using cif 3. In: ISOLA, vol 9952 LNCS, pp 856–873.  https://doi.org/10.1007/978-3-319-47166-2_59
  31. 58.
    Beek MHt, Legay A, Lafuente AL, Vandin A (2015) Statistical analysis of probabilistic models of software product lines with quantitative constraints. In: SPLC. ACM, pp 11–15.  https://doi.org/10.1145/2791060.2791087
  32. 59.
    Beek MHt, De Vink EP (2014) Using mcrl2 for the analysis of software product lines. In: FormaliSE. ACM, pp 31–37.  https://doi.org/10.1145/2593489.2593493
  33. 60.
    Benavides D, Felfernig A, Galindo J, Reinfrank F (2013) Automated analysis in feature modelling and product configuration. In: ICSR, vol 7925 LNCS, pp 160–175.  https://doi.org/10.1007/978-3-642-38977-1_11
  34. 61.
    Berger T, She S, Lotufo R, Czarnecki K, Wasowski A (2010a) Feature-to-code mapping in two large product lines. In: SPLC. Citeseer, pp 498–499.  https://doi.org/10.1007/978-3-642-15579-6_48
  35. 62.
    Berger T, She S, Lotufo R, Wąsowski A, Czarnecki K (2010b) Variability modeling in the real: a perspective from the operating systems domain. In: ASE, pp 73–82.  https://doi.org/10.1145/1858996.1859010
  36. 63.
    Berger T, She S, Lotufo R, Wasowski A, Czarnecki K (2013) A study of variability models and languages in the systems software domain. TSE 39(12):1611–1640.  https://doi.org/10.1109/TSE.2013.34 CrossRefGoogle Scholar
  37. 64.
    Berger T, Lettner D, Rubin J, Grünbacher P, Silva A, Becker M, Chechik M, Czarnecki K (2015) What is a feature? a qualitative study of features in industrial software product lines. In: SPLC, vol 20-24-July-2015, pp 16–25.  https://doi.org/10.1145/2791060.2791108
  38. 65.
    Bezerra C, Andrade R, Monteiro J (2017) Exploring quality measures for the evaluation of feature models: a case study. JSS 131:366–385.  https://doi.org/10.1016/j.jss.2016.07.040 CrossRefGoogle Scholar
  39. 66.
    Bąk K, Diskin Z, Antkiewicz M, Czarnecki K, Wąsowski A (2016) Clafer: unifying class and feature modeling. SOSYM 15(3):811–845.  https://doi.org/10.1007/s10270-014-0441-1 CrossRefGoogle Scholar
  40. 67.
    Boškovi M, Bagheri E, GaŠevi D, Mohabbati B, Kaviani N, Hatala M (2010) Automated staged configuration with semantic web technologies. IJSEKE 20(4):459–484.  https://doi.org/10.1142/S0218194010004827 CrossRefGoogle Scholar
  41. 68.
    Boucher Q, Perrouin G, Heymans Pb (2012) Deriving configuration interfaces from feature models: a vision paper. In: VAMOS, pp 37–44.  https://doi.org/10.1145/2110147.2110152
  42. 69.
    Brabrand C, Ribeiro M, Tolêdo T, Borba P (2012) Intraprocedural dataflow analysis for software product lines. In: AOSD. ACM, pp 13–24.  https://doi.org/10.1145/2162049.2162052
  43. 70.
    Buchmann T, Dotor A, Westfechtel B (2013) Mod2-scm: A model-driven product line for software configuration management systems. IST 55(3):630–650.  https://doi.org/10.1016/j.infsof.2012.07.010 CrossRefGoogle Scholar
  44. 71.
    Bürdek J, Kehrer T, Lochau M, Reuling D, Kelter U, Schürr A (2016) Reasoning about product-line evolution using complex feature model differences. ASEJ 23(4):687–733.  https://doi.org/10.1007/s10515-015-0185-3 CrossRefGoogle Scholar
  45. 72.
    Camacho C, Llana L, Núñez A (2016) Cost-related interface for software product lines. LAMP 85(1):227–244.  https://doi.org/10.1016/j.jlamp.2015.09.009 MathSciNetzbMATHCrossRefGoogle Scholar
  46. 73.
    Capilla R, Bosch J (2011) The promise and challenge of runtime variability. Computer 44(12):93–95.  https://doi.org/10.1109/MC.2011.382 CrossRefGoogle Scholar
  47. 74.
    Capilla R, Bosch J, Trinidad P, Ruiz-Cortés A, Hinchey M (2014a) An overview of dynamic software product line architectures and techniques: observations from research and industry. JSS 91(1):3–23.  https://doi.org/10.1016/j.jss.2013.12.038 CrossRefGoogle Scholar
  48. 75.
    Capilla R, Ortiz Ó, Hinchey M (2014b) Context variability for context-aware systems. Computer 47(2):85–87.  https://doi.org/10.1109/mc.2014.33 CrossRefGoogle Scholar
  49. 76.
    Chavarriaga J, Rangel C, Noguera C, Casallas R, Jonckers V (2015) Using multiple feature models to specify configuration options for electrical transformers: an experience report. In: SPLC, vol 20-24-July-2015, pp 216–224.  https://doi.org/10.1145/2791060.2791091
  50. 77.
    Chen S, Erwig M (2011) Optimizing the product derivation process. In: SPLC, pp 35–44.  https://doi.org/10.1109/SPLC.2011.47
  51. 78.
    Chimiak-Opoka J, Demuth B (2011) Ocl tools report based on the ide4ocl feature model. ECEASSTGoogle Scholar
  52. 79.
    Chrszon P, Dubslaff C, Klüppelholz S, Baier C (2016) Family-based modeling and analysis for probabilistic systems - featuring profeat. In: FASE, vol 9633, pp 287–304.  https://doi.org/10.1007/978-3-662-49665-7_17
  53. 80.
    Chrszon P, Dubslaff C, Klüppelholz S, Baier C (2017) Profeat: feature-oriented engineering for family-based probabilistic model checking. FAC 30(1):45–75.  https://doi.org/10.1007/s00165-017-0432-4 MathSciNetCrossRefGoogle Scholar
  54. 81.
    Classen A, Boucher Q, Heymans P (2011) A text-based approach to feature modelling: syntax and semantics of tvl. SCP 76(12):1130–1143.  https://doi.org/10.1016/j.scico.2010.10.005 CrossRefGoogle Scholar
  55. 82.
    Classen A, Heymans P, Schobbens PY, Legay A (2011) Symbolic model checking of software product lines. In: ICSE. ACM, pp 321–330.  https://doi.org/10.1145/1985793.1985838
  56. 83.
    Cordy M, Schobbens PY, Heymans P, Legay A (2013) Beyond boolean product-line model checking: dealing with feature attributes and multi-features. In: ICSE. IEEE Press, pp 472–481.  https://doi.org/10.1109/icse.2013.6606593
  57. 84.
    Costa GCB, Braga R, David JMN, Campos F (2015) A scientific software product line for the bioinformatics domain. JBI 56:239–264.  https://doi.org/10.1016/j.jbi.2015.05.014 CrossRefGoogle Scholar
  58. 85.
    Czarnecki K, Grünbacher P, Rabiser R, Schmid K, Wąsowski A (2012) Cool features and tough decisions: a comparison of variability modeling approaches. In: VAMOS. ACM, pp 173–182.  https://doi.org/10.1145/2110147.2110167
  59. 86.
    Davril JM, Delfosse E, Hariri N, Acher M, Cleland-Huang J, Heymans P (2013) Feature model extraction from large collections of informal product descriptions. In: ESEC/FSE, pp 290–300.  https://doi.org/10.1145/2491411.2491455
  60. 87.
    Díaz J, Pérez J, Garbajosa J (2015) A model for tracing variability from features to product-line architectures: a case study in smart grids. REJ 20(3):323–343.  https://doi.org/10.1007/s00766-014-0203-1 CrossRefGoogle Scholar
  61. 88.
    Del-Río-Ortega A, Resinas M, Cabanillas C, Ruiz-Cortés A (2013) On the definition and design-time analysis of process performance indicators. IS 38(4):470–490.  https://doi.org/10.1016/j.is.2012.11.004 CrossRefGoogle Scholar
  62. 89.
    Dermeval Db, Tenório T, Bittencourt I, Silva A, Isotani S, Ribeiro M (2015) Ontology-based feature modeling: an empirical study in changing scenarios. ESA 42(11):4950–4964.  https://doi.org/10.1016/j.eswa.2015.02.020 CrossRefGoogle Scholar
  63. 90.
    Dhungana D, Seichter D, Botterweck G, Rabiser R, Grunbacher P, Benavides D, Galindo JA (2011) Configuration of multi product lines by bridging heterogeneous variability modeling approaches. In: SPLC. IEEE, pp 120–129.  https://doi.org/10.1109/SPLC.2011.22
  64. 91.
    Dhungana D, Seichter D, Botterweck G, Rabiser R, Grünbacher P, Benavides D, Galindo JA (2013) Integrating heterogeneous variability modeling approaches with invar. In: VAMOS. ACM, p 8.  https://doi.org/10.1145/2430502.2430514
  65. 92.
    Dintzner N, Van Deursen A, Pinzger M (2014) Extracting feature model changes from the linux kernel using fmdiff. In: VAMOS. ACM, p 22.  https://doi.org/10.1145/2556624.2556631
  66. 93.
    Dintzner N, van Deursen A, Pinzger M (2017) Analysing the linux kernel feature model changes using fmdiff. SOSYM 16(1):55–76.  https://doi.org/10.1007/s10270-015-0472-2 CrossRefGoogle Scholar
  67. 94.
    Diskin Z, Safilian A, Maibaum T, Ben-David S (2016) Faithful modeling of product lines with kripke structures and modal logic. SACS 26(1):69–122.  https://doi.org/10.7561/SACS.2016.1.69 MathSciNetzbMATHCrossRefGoogle Scholar
  68. 95.
    Dougherty B, White J, Schmidt DC (2012) Model-driven auto-scaling of green cloud computing infrastructure. FGCS 28(2):371–378.  https://doi.org/10.1016/j.future.2011.05.009 CrossRefGoogle Scholar
  69. 96.
    Dumitrescu C, Mazo R, Salinesi C, Dauron A (2013) Bridging the gap between product lines and systems engineering: an experience in variability management for automotive model based systems engineering. In: SPLC. ACM, pp 254–263.  https://doi.org/10.1145/2491627.2491655
  70. 97.
    Dumitru H, Gibiec M, Hariri N, Cleland-Huang J, Mobasher B, Castro-Herrera C, Mirakhorli M (2011) On-demand feature recommendations derived from mining public product descriptions. In: ICSE, pp 181–190.  https://doi.org/10.1145/1985793.1985819
  71. 98.
    Duran M, Mussbacher G (2016) Investigation of feature run-time conflicts on goal model-based reuse. ISF 18(5):855–875.  https://doi.org/10.1007/s10796-016-9657-7 CrossRefGoogle Scholar
  72. 99.
    Duran-Limon H, Garcia-Rios C, Castillo-Barrera F, Capilla R (2015) An ontology-based product architecture derivation approach. TSE 41(12):1153–1168.  https://doi.org/10.1109/TSE.2015.2449854 CrossRefGoogle Scholar
  73. 100.
    Durán A, Benavides D, Segura S, Trinidad P, Ruiz-Cortés A (2017) Flame: a formal framework for the automated analysis of software product lines validated by automated specification testing. SOSYM 16(4):1049–1082.  https://doi.org/10.1007/s10270-015-0503-z CrossRefGoogle Scholar
  74. 101.
    Eichelberger H, Schmid K (2014) Mapping the design-space of textual variability modeling languages: a refined analysis. STTT 17(5):559–584.  https://doi.org/10.1007/s10009-014-0362-x CrossRefGoogle Scholar
  75. 102.
    El-Sharkawy S, Dederichs S, Schmid K (2012) From feature models to decision models and back again an analysis based on formal transformations. In: SPLC. ACM, pp 126–135.  https://doi.org/10.1145/2362536.2362555
  76. 103.
    El-Sharkawy S, Krafczyk A, Schmid K (2017) An empirical study of configuration mismatches in linux. In: SPLC, vol 1, pp 19–28.  https://doi.org/10.1145/3106195.3106208
  77. 104.
    Ensan F, Bagheri E, Gašević D (2012) Evolutionary search-based test generation for software product line feature models. In: AISE pp 613–628.  https://doi.org/10.1007/978-3-642-31095-9_40
  78. 105.
    Esfahani N, Elkhodary A, Malek S (2013) A learning-based framework for engineering feature-oriented self-adaptive software systems. TSE 39(11):1467–1493.  https://doi.org/10.1109/TSE.2013.37 CrossRefGoogle Scholar
  79. 106.
    Famelis M, Salay R, Chechik M (2012) Partial models: Towards modeling and reasoning with uncertainty. In: ICSE. IEEE, pp 573–583.  https://doi.org/10.1109/icse.2012.6227159
  80. 107.
    Felfernig A, Reiterer S, Stettinger M, Tiihonen J (2015a) Intelligent techniques for configuration knowledge evolution. In: VAMOS, vol 21-23-January-2015, pp 51–58.  https://doi.org/10.1145/2701319.2701320
  81. 108.
    Felfernig A, Reiterer S, Stettinger M, Tiihonen J (2015b) Towards understanding cognitive aspects of configuration knowledge formalization. In: VAMOS, vol 21-23-January-2015, pp 117–123.  https://doi.org/10.1145/2701319.2701327
  82. 109.
    Fernandes P, Werner C, Teixeira E (2011) An approach for feature modeling of context-aware software product line. JUCS 17(5):807–829Google Scholar
  83. 110.
    Fernandez-Amoros D, Heradio R, Cerrada C, Herrera-Viedma E, Cobo M (2017) Towards taming variability models in the wild. FAIA 297:454–465.  https://doi.org/10.3233/978-1-61499-800-6-454 CrossRefGoogle Scholar
  84. 111.
    Ferreira J, Vergilio S, Quinaia M (2017a) Software product line testing based on feature model mutation. IJSEKE 27(5):817–839.  https://doi.org/10.1142/S0218194017500309 CrossRefGoogle Scholar
  85. 112.
    Ferreira T, Lima J, Strickler A, Kuk J, Vergilio S, Pozo A (2017b) Hyper-heuristic based product selection for software product line testing. IEEECIM 12(2):34–45.  https://doi.org/10.1109/MCI.2017.2670461 CrossRefGoogle Scholar
  86. 113.
    Filho JBF, Barais O, Acher M, Le Noir J, Legay A, Baudry B (2014) Generating counterexamples of model-based software product lines. STTT 17(5):585–600.  https://doi.org/10.1007/s10009-014-0341-2 CrossRefGoogle Scholar
  87. 114.
    Finkel R, O’Sullivan B (2011) Reasoning about conditional constraint specification problems and feature models. AIEDAM 25(2):163–174.  https://doi.org/10.1017/S0890060410000600 CrossRefGoogle Scholar
  88. 115.
    Font J, Arcega L, Haugen O, Cetina C (2017) Leveraging variability modeling to address metamodel revisions in model-based software product lines. CLSS 48:20–38.  https://doi.org/10.1016/j.cl.2016.08.003 CrossRefGoogle Scholar
  89. 116.
    Galindo J, Acher M, Tirado J, Vidal C, Baudry B, Benavides D (2016) Exploiting the enumeration of all feature model configurations: A new perspective with distributed computing. In: SPLC, vol 16-23-September-2016, pp 74–78.  https://doi.org/10.1145/2934466.2934478
  90. 117.
    Galindo JA, Turner H, Benavides D, White J (2014) Testing variability-intensive systems using automated analysis: an application to android. SQJ.  https://doi.org/10.1007/s11219-014-9258 CrossRefGoogle Scholar
  91. 118.
    Galindo Je, Dhungana D, Rabiser R, Benavides D, Botterweck G, Grünbacher P (2015) Supporting distributed product configuration by integrating heterogeneous variability modeling approaches. IST 62(1):78–100.  https://doi.org/10.1016/j.infsof.2015.02.002 CrossRefGoogle Scholar
  92. 119.
    García-Galán J, Pasquale L, Trinidad P, Ruiz-Cortés A (2016) User-centric adaptation analysis of multi-tenant services. TAAS.  https://doi.org/10.1145/2790303 CrossRefGoogle Scholar
  93. 120.
    García-Galán J, García J, Trinidad P, Fernández P (2017) Modelling and analysing highly-configurable services. In: SPLC, vol 1, pp 114–122.  https://doi.org/10.1145/3106195.3106211
  94. 121.
    Ghanam Y, Maurer F (2010) Linking feature models to code artifacts using executable acceptance tests. In: SPLC, vol 6287 LNCS, pp 211–225.  https://doi.org/10.1007/978-3-642-15579-6_15
  95. 122.
    Gheyi R, Massoni T, Borba P (2011) Automatically checking feature model refactorings. JUCS 17(5):684–711zbMATHGoogle Scholar
  96. 123.
    Guo J, White J, Wang G, Li J, Wang Y (2011) A genetic algorithm for optimized feature selection with resource constraints in software product lines. JSS 84(12):2208–2221.  https://doi.org/10.1016/j.jss.2011.06.026 CrossRefGoogle Scholar
  97. 124.
    Guo J, Wang Y, Trinidad P, Benavides D (2012) Consistency maintenance for evolving feature models. ESA 39(5):4987–4998.  https://doi.org/10.1016/j.eswa.2011.10.014 CrossRefGoogle Scholar
  98. 125.
    Guo J, Zulkoski E, Olaechea R, Rayside D (2014) Scaling exact multi-objective combinatorial optimization by parallelization. In: ASE.  https://doi.org/10.1145/2642937.2642971
  99. 126.
    Hariri N, Castro-Herrera C, Mirakhorli M, Cleland-Huang J, Mobasher B (2013) Supporting domain analysis through mining and recommending features from online product listings. TSE 39(12):1736–1752.  https://doi.org/10.1109/tse.2013.39 CrossRefGoogle Scholar
  100. 127.
    Haslinger EN, Lopez-Herrejon RE, Egyed A (2013) On extracting feature models from sets of valid feature combinations. In: FASE. Springer, pp 53–67.  https://doi.org/10.1007/978-3-642-37057-1_5
  101. 128.
    Heider W, Rabiser R, Grünbacher P (2012) Facilitating the evolution of products in product line engineering by capturing and replaying configuration decisions. STTT 14(5):613–630.  https://doi.org/10.1007/s10009-012-0229-y CrossRefGoogle Scholar
  102. 129.
    Henard C, Papadakis M, Perrouin G, Klein J, Le Traon Y (2013a) Assessing software product line testing via model-based mutation: An application to similarity testing. In: ICSTW. IEEE, pp 188–197.  https://doi.org/10.1109/ICSTW.2013.30
  103. 130.
    Henard C, Papadakis M, Perrouin G, Klein J, Le Traon Y (2013b) Multi-objective test generation for software product lines. In: SPLC, pp 62–71.  https://doi.org/10.1145/2491627.2491635
  104. 131.
    Henard C, Papadakis M, Perrouin G, Klein J, Le Traon Y (2013c) Towards automated testing and fixing of re-engineered feature models. In: ICSE, pp 1245–1248.  https://doi.org/10.1109/ICSE.2013.6606689
  105. 132.
    Henard C, Papadakis M, Perrouin G, Klein J, Heymans P, Traon Y (2014) Bypassing the combinatorial explosion: using similarity to generate and prioritize t-wise test configurations for software product lines. TSE 40(7):650–670.  https://doi.org/10.1109/TSE.2014.2327020 CrossRefGoogle Scholar
  106. 133.
    Henard C, Papadakis M, Harman M, Le Traon Y (2015) Combining multi-objective search and constraint solving for configuring large software product lines. In: ICSE. IEEE, vol 1, pp 517–528.  https://doi.org/10.1109/icse.2015.69
  107. 134.
    Heradio R, Perez-Morago H, Fernandez-Amoros D, Cabrerizo F, Herrera-Viedma E (2015) A science mapping analysis of the literature on software product lines. CCIS 532:242–251.  https://doi.org/10.1007/978-3-319-22689-7_18 CrossRefGoogle Scholar
  108. 135.
    Heradio R, Perez-Morago H, Alférez M, Fernandez-Amoros D, Alférez GH (2016) Augmenting measure sensitivity to detect essential, dispensable and highly incompatible features in mass customization. EJOR 248(3):1066–1077.  https://doi.org/10.1016/j.ejor.2015.08.005 MathSciNetzbMATHCrossRefGoogle Scholar
  109. 136.
    Heymans P, Boucher Q, Classen A, Bourdoux A, Demonceau L (2012) A code tagging approach to software product line development. STTT 14(5):553–566.  https://doi.org/10.1007/s10009-012-0242-1 CrossRefGoogle Scholar
  110. 137.
    Hidaka S, Tisi M, Cabot J, Hu Z (2016) Feature-based classification of bidirectional transformation approaches. SOSYM 15(3):907–928.  https://doi.org/10.1007/s10270-014-0450-0 CrossRefGoogle Scholar
  111. 138.
    Hierons R, Li M, Liu X, Segura S, Zheng W (2016) Sip: Optimal product selection from feature models using many-objective evolutionary optimization. TOSEM.  https://doi.org/10.1145/2897760 CrossRefGoogle Scholar
  112. 139.
    Hu J, Wang Q (2016) Extensions and evolution analysis method for software feature models. JS 27(5):1212–1229.  https://doi.org/10.13328/j.cnki.jos.004829 MathSciNetCrossRefGoogle Scholar
  113. 140.
    Hubaux A, Heymans Pb, Schobbens PY, Deridder D, Abbasi E (2013) Supporting multiple perspectives in feature-based configuration. SOSYM 12(3):641–663.  https://doi.org/10.1007/s10270-011-0220-1 CrossRefGoogle Scholar
  114. 141.
    Javed M (2014) Towards the maturity model for feature oriented domain analysis. CES 4(3):170Google Scholar
  115. 142.
    Jézéquel JM (2012) Model-driven engineering for software product lines. ISRN 2012Google Scholar
  116. 143.
    Johansen MF, Haugen Ø, Fleurey F (2012) An algorithm for generating t-wise covering arrays from large feature models. In: SPLC. ACM, pp 46–55.  https://doi.org/10.1145/2362536.2362547
  117. 144.
    Kang (2010) Foda: Twenty years of perspective on feature modeling. In: VAMOSGoogle Scholar
  118. 145.
    Karataş A, Oǧuztüzün H, Doǧru A (2010) Mapping extended feature models to constraint logic programming over finite domains. In: SPLC, vol 6287 LNCS, pp 286–299.  https://doi.org/10.1007/978-3-642-15579-6_20
  119. 146.
    Karatas A, Oguztüzün H, Dogru A (2013) From extended feature models to constraint logic programming. SCP.  https://doi.org/10.1016/j.scico.2012.06.004
  120. 147.
    Karatas AS, Oguztüzün H (2016) Attribute-based variability in feature models. REJ 21(2):185–208.  https://doi.org/10.1007/s00766-014-0216-9 CrossRefGoogle Scholar
  121. 148.
    Kastner C, Dreiling A, Ostermann K (2014) Variability mining: consistent semi-automatic detection of product-line features. TSE 40(1):67–82.  https://doi.org/10.1109/TSE.2013.45 CrossRefGoogle Scholar
  122. 149.
    Khoshnevis S, Shams F (2017) Automating identification of services and their variability for product lines using nsga-ii. FCS 11(3):444–464.  https://doi.org/10.1007/s11704-016-5121-6 CrossRefGoogle Scholar
  123. 150.
    Kim CHP, Marinov D, Khurshid S, Batory D, Souto S, Barros P, d’Amorim M (2013) Splat: lightweight dynamic analysis for reducing combinatorics in testing configurable systems. In: ESEC/FSE. ACM, pp 257–267.  https://doi.org/10.1145/2491411.2491459
  124. 151.
    Kolesnikov SS, Apel S, Siegmund N, Sobernig S, Kästner C, Senkaya S (2013) Predicting quality attributes of software product lines using software and network measures and sampling. In: VAMOS, ACM, p 6.  https://doi.org/10.1145/2430502.2430511
  125. 152.
    Kowal M, Ananieva S, Thüm T, Schaefer I (2017) Supporting the development of interdisciplinary product lines in the manufacturing domain. IFAC 50(1):4336–4341.  https://doi.org/10.1016/j.ifacol.2017.08.870 CrossRefGoogle Scholar
  126. 153.
    Leite A, Alves V, Rodrigues G, Tadonki C, Eisenbeis C, Melo A (2017) Dohko: an autonomic system for provision, configuration, and management of inter-cloud environments based on a software product line engineering method. UCCJournal 20(3):1951–1976.  https://doi.org/10.1007/s10586-017-0897-1 CrossRefGoogle Scholar
  127. 154.
    Lian XL, Zhang L (2017) Multi-objective optimization algorithm for feature selection in software product lines. IndianST 28(10):2548–2563.  https://doi.org/10.13328/j.cnki.jos.005130 CrossRefGoogle Scholar
  128. 155.
    Liang J, Ganesh V, Czarnecki K, Raman V (2015) Sat-based analysis of large real-world feature models is easy. In: SPLC, vol 20-24-July-2015, pp 91–100.  https://doi.org/10.1145/2791060.2791070
  129. 156.
    Liebig J, von Rhein A, Kästner C, Apel S, Dörre J, Lengauer C (2013) Scalable analysis of variable software. In: ESEC/FSE. ACM, pp 81–91.  https://doi.org/10.1145/2491411.2491437
  130. 157.
    Linsbauer L, Lopez-Herrejon R, Egyed A (2017) Variability extraction and modeling for product variants. SOSYM 16(4):1179–1199.  https://doi.org/10.1007/s10270-015-0512-y CrossRefGoogle Scholar
  131. 158.
    Liu Y, Lai K, Dai G, Yuen M (2010) A semantic feature model in concurrent engineering. TASE.  https://doi.org/10.1109/tase.2009.2039996 CrossRefGoogle Scholar
  132. 159.
    Lochau M, Oster S, Goltz U, Schürr A (2012a) Model-based pairwise testing for feature interaction coverage in software product line engineering. SQJ 20(3–4):567–604.  https://doi.org/10.1007/s11219-011-9165-4 CrossRefGoogle Scholar
  133. 160.
    Lochau M, Schaefer I, Kamischke J, Lity S (2012b) Incremental model-based testing of delta-oriented software product lines. In: TAP. Springer, pp 67–82.  https://doi.org/10.1007/978-3-642-30473-6_7
  134. 161.
    Lochau M, Bürdek J, Hölzle S, Schürr A (2017) Specification and automated validation of staged reconfiguration processes for dynamic software product lines. SOSYM 16(1):125–152.  https://doi.org/10.1007/s10270-015-0470-4 CrossRefGoogle Scholar
  135. 162.
    Lopez-Herrejon R, Montalvillo-Mendizabal L, Egyed A (2011) From requirements to features: an exploratory study of feature-oriented refactoring. In: SPLC, pp 181–190.  https://doi.org/10.1109/SPLC.2011.52
  136. 163.
    Lopez-Herrejon R, Linsbauer L, Galindo J, Parejo J, Benavides D, Segura S, Egyed A (2015) An assessment of search-based techniques for reverse engineering feature models. JSS 103:353–369.  https://doi.org/10.1016/j.jss.2014.10.037 CrossRefGoogle Scholar
  137. 164.
    Lopez-Herrejon R, Ferrer J, Chicano F, Egyed A, Alba E (2016) Evolutionary computation for software product line testing: an overview and open challenges. SCI 617:59–87.  https://doi.org/10.1007/978-3-319-25964-2_4 CrossRefGoogle Scholar
  138. 165.
    Lopez-Herrejon RE, Egyed A (2012) Towards fixing inconsistencies in models with variability. In: VAMOS. ACM, pp 93–100.  https://doi.org/10.1145/2110147.2110158
  139. 166.
    Lopez-Herrejon RE, Chicano F, Ferrer J, Egyed A, Alba E (2013) Multi-objective optimal test suite computation for software product line pairwise testing. In: ICSM. IEEE, pp 404–407.  https://doi.org/10.1109/ICSM.2013.58
  140. 167.
    Lotufo R, She S, Berger T, Czarnecki K, Wąsowski A (2010) Evolution of the linux kernel variability model. In: SPLC. Springer, pp 136–150.  https://doi.org/10.1002/smr.1595
  141. 168.
    Markiegi U, Arrieta A, Sagardui G, Etxeberria L (2017) Search-based product line fault detection allocating test cases iteratively. In: SPLC, vol 1, pp 123–132.  https://doi.org/10.1145/3106195.3106210
  142. 169.
    Mauro J, Nieke M, Seidl C, Yu I (2016) Context aware reconfiguration in software product lines. In: VAMOS, vol 27-29-January-2016, pp 41–48.  https://doi.org/10.1145/2866614.2866620
  143. 170.
    Mazo R, Grünbacher P, Heider W, Rabiser R, Salinesi C, Diaz D (2011) Using constraint programming to verify dopler variability models. In: VAMOS, ACM, pp 97–103.  https://doi.org/10.1145/1944892.1944904
  144. 171.
    Mazo R, Salinesi C, Diaz D, Djebbi O, Lora-Michiels A (2012) Constraints: the heart of domain and application engineering in the product lines engineering strategy. IJISMD 3(2):33–68.  https://doi.org/10.4018/jismd.2012040102 CrossRefGoogle Scholar
  145. 172.
    Meinicke J, Thüm T, Schröter R, Krieter S, Benduhn F, Saake G, Leich T (2016) Featureide: taming the preprocessor wilderness. In: ICSE. IEEE, pp 629–632.  https://doi.org/10.1145/2889160.2889175
  146. 173.
    Mendonca M, Cowan D (2010) Decision-making coordination and efficient reasoning techniques for feature-based configuration. SCP 75(5):311–332.  https://doi.org/10.1016/j.scico.2009.12.004 MathSciNetzbMATHCrossRefGoogle Scholar
  147. 174.
    Merschen D, Polzer A, Botterweck G, Kowalewski S (2011) Experiences of applying model-based analysis to support the development of automotive software product lines. In: VAMOS. ACM, pp 141–150,  https://doi.org/10.1145/1944892.1944910
  148. 175.
    Michel R, Classen A, Hubaux A, Boucher Q (2011) A formal semantics for feature cardinalities in feature diagrams. In: VAMOS. ACM, pp 82–89.  https://doi.org/10.1145/1944892.1944902
  149. 176.
    Modrak V, Soltysova Z, Modrak J, Behunova A (2017) Reducing impact of negative complexity on sustainability of mass customization. Sustainability.  https://doi.org/10.3390/su9112014 CrossRefGoogle Scholar
  150. 177.
    Mohalik S, Ramesh S, Millo JV, Krishna SN, Narwane GK (2012) Tracing spls precisely and efficiently. In: SPLC. ACM, pp 186–195.  https://doi.org/10.1145/2362536.2362562
  151. 178.
    Murguzur A, De Carlos X, Trujillo S, Sagardui G (2014) Context-aware staged configuration of process variants@ runtime. In: CAISE. Springer, pp 241–255.  https://doi.org/10.1007/978-3-319-07881-6_17
  152. 179.
    Mussbacher G, Araújo J, Moreira A, Amyot D (2012) Aourn-based modeling and analysis of software product lines. SQJ 20(3–4):645–687.  https://doi.org/10.1007/s11219-011-9153-8 CrossRefGoogle Scholar
  153. 180.
    Nadi S, Berger T, Kästner C, Czarnecki K (2014) Mining configuration constraints: static analyses and empirical results. In: ICSE. ACM, pp 140–151.  https://doi.org/10.1145/2568225.2568283
  154. 181.
    Nadi S, Berger T, Kästner C, Czarnecki K (2015) Where do configuration constraints stem from? an extraction approach and an empirical study. TSE 41(8):820–841.  https://doi.org/10.1109/TSE.2015.2415793 CrossRefGoogle Scholar
  155. 182.
    Narwane G, Galindo J, Krishna S, Benavides D, Millo JV, Ramesh S (2016) Traceability analyses between features and assets in software product lines. Entropy.  https://doi.org/10.3390/e18080269 CrossRefGoogle Scholar
  156. 183.
    Nešić D, Nyberg M (2016) Multi-view modeling and automated analysis of product line variability in systems engineering. In: SPLC, vol 16-23-September-2016, pp 287–296.  https://doi.org/10.1145/2934466.2946044
  157. 184.
    Novak M, Magdalenić I, Radošević D (2016) Common metamodel of component diagram and feature diagram in generative programming. JCS 12(10):517–526.  https://doi.org/10.3844/jcssp.2016.517.526 CrossRefGoogle Scholar
  158. 185.
    Ochoa L, Pereira J, González-Rojas O, Castro H, Saake G (2017) A survey on scalability and performance concerns in extended product lines configuration. In: VAMOS, pp 5–12.  https://doi.org/10.1145/3023956.3023959
  159. 186.
    Oster S, Markert F, Ritter P (2010) Automated incremental pairwise testing of software product lines. In: SPLC, vol 6287 LNCS, pp 196–210.  https://doi.org/10.1007/978-3-642-15579-6_14
  160. 187.
    Oster S, Zorcic I, Markert F, Lochau M (2011) Moso-polite: tool support for pairwise and model-based software product line testing. In: VAMOS. ACM. pp 79–82,  https://doi.org/10.1145/1944892.1944901
  161. 188.
    Parejo J, Sánchez A, Segura S, Ruiz-Cortés A, Lopez-Herrejon R, Egyed A (2016) Multi-objective test case prioritization in highly configurable systems: a case study. JSS 122:287–310.  https://doi.org/10.1016/j.jss.2016.09.045 CrossRefGoogle Scholar
  162. 189.
    Pascual G, Lopez-Herrejon R, Pinto M, Fuentes L, Egyed A (2015) Applying multiobjective evolutionary algorithms to dynamic software product lines for reconfiguring mobile applications. JSS 103:392–411.  https://doi.org/10.1016/j.jss.2014.12.041 CrossRefGoogle Scholar
  163. 190.
    Pascual GG, Pinto M, Fuentes L (2013) Run-time adaptation of mobile applications using genetic algorithms. In: ICSE. IEEE Press, pp 73–82.  https://doi.org/10.1109/seams.2013.6595494
  164. 191.
    Paškevičius P, Damaševičius R, Karčiauskas E, Marcinkevičius R (2012) Automatic extraction of features and generation of feature models from java programs. ITC 41(4):376–384.  https://doi.org/10.5755/j01.itc.41.4.1108 CrossRefGoogle Scholar
  165. 192.
    Paskevicius P, Damasevicius R, Štuikys V (2012) Change impact analysis of feature models. JKSU 319 CCIS:108–122.  https://doi.org/10.1007/978-3-642-33308-8_10
  166. 193.
    Passos L, Czarnecki K, Apel S, Wąsowski A, Kästner C, Guo J (2013) Feature-oriented software evolution. In: VAMOS. ACM, p 17.  https://doi.org/10.1145/2430502.2430526
  167. 194.
    Pereira J, Constantino K, Figueiredo E, Saake G (2016) Quantitative and qualitative empirical analysis of three feature modeling tools. CCIS 703:66–88.  https://doi.org/10.1007/978-3-319-56390-9_4 CrossRefGoogle Scholar
  168. 195.
    Perez-Morago H, Heradio R, Fernandez-Amoros D, Bean R, Cerrada C (2015) Efficient identification of core and dead features in variability models. ACCESS 3:2333–2340.  https://doi.org/10.1109/ACCESS.2015.2498764 CrossRefGoogle Scholar
  169. 196.
    Perrouin G, Oster S, Sen S, Klein J, Baudry B, le Traon Y (2012) Pairwise testing for software product lines: comparison of two approaches. SQJ 20(3–4):605–643.  https://doi.org/10.1007/s11219-011-9160-9 CrossRefGoogle Scholar
  170. 197.
    Pleuss A, Botterweck G (2012) Visualization of variability and configuration options. STTT 14(5):497–510.  https://doi.org/10.1007/s10009-012-0252-z CrossRefGoogle Scholar
  171. 198.
    Pleuss A, Botterweck G, Dhungana D (2010) Integrating automated product derivation and individual user interface design. In: VAMOSGoogle Scholar
  172. 199.
    Pleuss A, Rabiser R, Botterweck G (2011) Visualization techniques for application in interactive product configuration. In: SPLC. ACM, p 22.  https://doi.org/10.1145/2019136.2019161
  173. 200.
    Pleuss A, Botterweck G, Dhungana D, Polzer A, Kowalewski S (2012) Model-driven support for product line evolution on feature level. JSS 85(10):2261–2274.  https://doi.org/10.1016/j.jss.2011.08.008 CrossRefGoogle Scholar
  174. 201.
    Pohl R, Lauenroth K, Pohl K (2011) A performance comparison of contemporary algorithmic approaches for automated analysis operations on feature models. In: ASE, pp 313–322.  https://doi.org/10.1109/ASE.2011.6100068
  175. 202.
    Pohl R, Stricker V, Pohl K (2013) Measuring the structural complexity of feature models. In: ASE. IEEE, pp 454–464.  https://doi.org/10.1109/ASE.2013.6693103
  176. 203.
    Quinton C, Romero D, Duchien L (2013) Cardinality-based feature models with constraints: a pragmatic approach. In: SPLC. ACM, pp 162–166.  https://doi.org/10.1145/2491627.2491638
  177. 204.
    Quinton C, Romero D, Duchien L (2014) Automated selection and configuration of cloud environments using software product lines principles. In: CLOUD. IEEE, pp 144–151.  https://doi.org/10.1109/CLOUD.2014.29
  178. 205.
    Quinton C, Rabiser R, Vierhauser M, Grünbacher P, Baresi L (2015) Evolution in dynamic software product lines: Challenges and perspectives. In: SPLC, vol 20-24-July-2015, pp 126–130.  https://doi.org/10.1145/2791060.2791101
  179. 206.
    Rauber T, Boldt FdA (2015) Heterogeneous feature models and feature selection applied to bearing fault diagnosis. TIE.  https://doi.org/10.1109/tie.2014.2327589 CrossRefGoogle Scholar
  180. 207.
    Rincón L, Giraldo GL, Mazo R, Salinesi C (2014) An ontological rule-based approach for analyzing dead and false optional features in feature models. ENTCS 302:111–132.  https://doi.org/10.1016/j.entcs.2014.01.023 CrossRefGoogle Scholar
  181. 208.
    Ripon S, Rahman M, Ferdous J, Hossain M (2016) Verification of spl feature model by using bayesian network. IndianST.  https://doi.org/10.17485/ijst/2016/v9i31/93731
  182. 209.
    Roos-Frantz F, Benavides D, Ruiz-Cortés A, Heuer A, Lauenroth K (2012) Quality-aware analysis in product line engineering with the orthogonal variability model. SQJ 20(3–4):519–565.  https://doi.org/10.1007/s11219-011-9156-5 CrossRefGoogle Scholar
  183. 210.
    Rosenmüller M, Siegmund N, Thüm T, Saake G (2011) Multi-dimensional variability modeling. In: VAMOS, pp 11–20.  https://doi.org/10.1145/1944892.1944894
  184. 211.
    Saeed M, Saleh F, Al-Insaif S, El-Attar M (2016) Empirical validating the cognitive effectiveness of a new feature diagrams visual syntax. IST 71:1–26.  https://doi.org/10.1016/j.infsof.2015.10.012 CrossRefGoogle Scholar
  185. 212.
    Sanchez A, Segura S, Ruiz-Cortes A (2014) A comparison of test case prioritization criteria for software product lines. In: ICST, pp 41–50.  https://doi.org/10.1109/ICST.2014.15
  186. 213.
    Sánchez AB, Segura S, Ruiz-Cortés A (2014) The drupal framework: a case study to evaluate variability testing techniques. In: VAMOS, ACM, p 11.  https://doi.org/10.1145/2556624.2556638
  187. 214.
    Sánchez AB, Segura S, Parejo JA, Ruiz-Cortés A (2015) Variability testing in the wild: the drupal case study. SOSYM.  https://doi.org/10.1007/s10270-015-0459-z CrossRefGoogle Scholar
  188. 215.
    Sannier N, Acher M, Baudry B (2013) From comparison matrix to variability model: The wikipedia case study. In: ASE, pp 580–585.  https://doi.org/10.1109/ASE.2013.6693116
  189. 216.
    Sayyad A, Ingram J, Menzies T, Ammar H (2013) Scalable product line configuration: A straw to break the camel’s back. In: ASE, pp 465–474.  https://doi.org/10.1109/ASE.2013.6693104
  190. 217.
    Schaefer I (2010) Variability modelling for model-driven development of software product lines. In: VAMOS, vol 10, pp 85–92Google Scholar
  191. 218.
    Schmid K, Rabiser R, Grünbacher P (2011) A comparison of decision modeling approaches in product lines. In: VAMOS, pp 119–126.  https://doi.org/10.1145/1944892.1944907
  192. 219.
    Schnabel T, Weckesser M, Kluge R, Lochau M, Schürr A (2016) Cardygan: Tool support for cardinality-based feature models. In: VAMOS, vol 27-29-January-2016, pp 33–40.  https://doi.org/10.1145/2866614.2866619
  193. 220.
    Schroeter J, Cech S, Götz S, Wilke C, Aßmann U (2012a) Towards modeling a variable architecture for multi-tenant saas-applications. In: VAMOS. ACM, pp 111–120.  https://doi.org/10.1145/2110147.2110160
  194. 221.
    Schroeter J, Mucha P, Muth M, Jugel K, Lochau M (2012b) Dynamic configuration management of cloud-based applications. In: SPLC. ACM, pp 171–178.  https://doi.org/10.1145/2364412.2364441
  195. 222.
    Schröter R, Thüm T, Siegmund N, Saake G (2013) Automated analysis of dependent feature models. In: VAMOS. ACM, p 9.  https://doi.org/10.1145/2430502.2430515
  196. 223.
    Schröter R, Siegmund N, Thüm T, Saake G (2014) Feature-context interfaces: tailored programming interfaces for software product lines. In: SPLC. ACM, pp 102–111.  https://doi.org/10.1145/2648511.2648522
  197. 224.
    Schröter R, Krieter S, Thüm T, Benduhn F, Saake G (2016) Feature-model interfaces: The highway to compositional analyses of highly-configurable systems. In: ICSE. IEEE Computer Society, pp 667–678.  https://doi.org/10.1145/2884781.2884823
  198. 225.
    Schubanz M, Pleuss A, Botterweck G, Lewerentz C (2012) Modeling rationale over time to support product line evolution planning. In: VAMOS, pp 193–199.  https://doi.org/10.1145/2110147.2110169
  199. 226.
    Segura S, Benavides D, Ruiz-Cortés A (2011a) Functional testing of feature model analysis tools: a test suite. IET 5(1):70–82.  https://doi.org/10.1049/iet-sen.2009.0096 CrossRefGoogle Scholar
  200. 227.
    Segura S, Hierons R, Benavides D, Ruiz-Cortés A (2011b) Automated metamorphic testing on the analyses of feature models. IST 53(3):245–258.  https://doi.org/10.1016/j.infsof.2010.11.002 CrossRefGoogle Scholar
  201. 228.
    Segura S, Galindo JA, Benavides D, Parejo JA, Ruiz-Cortés A (2012) Betty: benchmarking and testing on the automated analysis of feature models. In: VAMOS. ACM, pp 63–71.  https://doi.org/10.1145/2110147.2110155
  202. 229.
    Segura S, Parejo J, Hierons R, Benavides D, Ruiz-Cortés A (2014) Automated generation of computationally hard feature models using evolutionary algorithms. ESA 41(8):3975–3992.  https://doi.org/10.1016/j.eswa.2013.12.028 CrossRefGoogle Scholar
  203. 230.
    Segura S, Durán A, Sánchez A (2015) Automated metamorphic testing of variability analysis tools. STVR.  https://doi.org/10.1002/stvr.1566 CrossRefGoogle Scholar
  204. 231.
    Seidl C, Schaefer I, Assmann U (2014) Capturing variability in space and time with hyper feature models. In: VAMOS. ACM, p 6.  https://doi.org/10.1145/2556624.2556625
  205. 232.
    She S, Lotufo R, Berger T, Wasowski A, Czarnecki K (2010) The variability model of the linux kernel. In: VAMOS, vol 10, pp 45–51Google Scholar
  206. 233.
    She S, Lotufo R, Berger T, Wąsowski A, Czarnecki K (2011) Reverse engineering feature models. In: ICSE, pp 461–470.  https://doi.org/10.1145/1985793.1985856
  207. 234.
    Siegmund N, Kolesnikov SS, Kästner C, Apel S, Batory D, Rosenmüller M, Saake G (2012) Predicting performance via automated feature-interaction detection. In: ICSE. IEEE Press, pp 167–177.  https://doi.org/10.1109/icse.2012.6227196
  208. 235.
    Soltani S, Asadi M, Hatala M, Gašević D, Bagheri E (2011) Automated planning for feature model configuration based on stakeholders’ business concerns. In: ASE, pp 536–539.  https://doi.org/10.1109/ASE.2011.6100118
  209. 236.
    Soltani S, Asadi M, Gašević D, Hatala M, Bagheri E (2012) Automated planning for feature model configuration based on functional and non-functional requirements. In: SPLC, ACM, pp 56–65.  https://doi.org/10.1145/2362536.2362548
  210. 237.
    Stein J, Nunes I, Cirilo E (2014) Preference-based feature model configuration with multiple stakeholders. In: SPLC. ACM, pp 132–141.  https://doi.org/10.1145/2648511.2648525
  211. 238.
    Strickler A, Prado Lima J, Vergilio S, Pozo A (2016) Deriving products for variability test of feature models with a hyper-heuristic approach. ASCJ 49:1232–1242.  https://doi.org/10.1016/j.asoc.2016.07.059 CrossRefGoogle Scholar
  212. 239.
    Tanhaei M, Habibi J, Mirian-Hosseinabadi SH (2016) Automating feature model refactoring: a model transformation approach. IST 80:138–157.  https://doi.org/10.1016/j.infsof.2016.08.011 CrossRefGoogle Scholar
  213. 240.
    Tawhid R, Petriu D (2011) Automatic derivation of a product performance model from a software product line model. In: SPLC, pp 80–89.  https://doi.org/10.1109/SPLC.2011.27
  214. 241.
    Teixeira L, Borba P, Gheyi R (2013) Safe composition of configuration knowledge-based software product lines. JSS 86(4):1038–1053.  https://doi.org/10.1016/j.jss.2012.11.006 CrossRefGoogle Scholar
  215. 242.
    Ter Beek M, Fantechi A, Gnesi S (2015) Applying the product lines paradigm to the quantitative analysis of collective adaptive systems. In: SPLC, vol 20-24-July-2015, pp 321–326.  https://doi.org/10.1145/2791060.2791100
  216. 243.
    Thüm T, Kästner C, Erdweg S, Siegmund N (2011) Abstract features in feature modeling. In: SPLC, pp 191–200.  https://doi.org/10.1109/SPLC.2011.53
  217. 244.
    Thüm T, Apel S, Kästner C, Schaefer I, Saake G (2014a) A classification and survey of analysis strategies for software product lines. ACMCS.  https://doi.org/10.1145/2580950 CrossRefGoogle Scholar
  218. 245.
    Thüm T, Kästner C, Benduhn F, Meinicke J, Saake G, Leich T (2014b) Featureide: an extensible framework for feature-oriented software development. SCP 79:70–85.  https://doi.org/10.1016/j.scico.2012.06.002 CrossRefGoogle Scholar
  219. 246.
    Tërnava X, Collet P (2017) Early consistency checking between specification and implementation variabilities. In: SPLC, vol 1, pp 29–38.  https://doi.org/10.1145/3106195.3106209
  220. 247.
    Štuikys V, Burbaitė R, Bespalova K, Ziberkas G (2016) Model-driven processes and tools to design robot-based generative learning objects for computer science education. SCP 129:48–71.  https://doi.org/10.1016/j.scico.2016.03.009 CrossRefGoogle Scholar
  221. 248.
    Vierhauser M, Grünbacher P, Egyed A, Rabiser R, Heider W (2010) Flexible and scalable consistency checking on product line variability models. In: ASE. ACM, pp 63–72.  https://doi.org/10.1145/1858996.1859009
  222. 249.
    Vogel-Heuser B, Fay A, Schaefer I, Tichy M (2015) Evolution of software in automated production systems: challenges and research directions. JSS 110:54–84.  https://doi.org/10.1016/j.jss.2015.08.026 CrossRefGoogle Scholar
  223. 250.
    Von Rhein A, Apel S, Kästner C, Thüm T, Schaefer I (2013) The pla model: on the combination of product-line analyses. In: VAMOS. ACM, p 14.  https://doi.org/10.1145/2430502.2430522
  224. 251.
    Von Rhein A, Grebhahn A, Apel S, Siegmund N, Beyer D, Berger T (2015) Presence-condition simplification in highly configurable systems. In: ICSE vol 1, pp 178–188.  https://doi.org/10.1109/ICSE.2015.39
  225. 252.
    Walter R, Felfernig A, Küchlin W (2017) Constraint-based and sat-based diagnosis of automotive configuration problems. JIIS 49(1):87–118.  https://doi.org/10.1007/s10844-016-0422-7 CrossRefGoogle Scholar
  226. 253.
    Wang S, Ali S, Gotlieb A (2013) Minimizing test suites in software product lines using weight-based genetic algorithms. In: GECCO. ACM, pp 1493–1500.  https://doi.org/10.1145/2463372.2463545
  227. 254.
    Wang S, Buchmann D, Ali S, Gotlieb A, Pradhan D, Liaaen M (2014) Multi-objective test prioritization in software product line testing: an industrial case study. In: SPLC. ACM, pp 32–41.  https://doi.org/10.1145/2648511.2648515
  228. 255.
    Wang S, Ali S, Gotlieb A, Liaaen M (2016) A systematic test case selection methodology for product lines: results and insights from an industrial case study. ESE 21(4):1586–1622.  https://doi.org/10.1007/s10664-014-9345-5 CrossRefGoogle Scholar
  229. 256.
    Wang S, Ali S, Gotlieb A, Liaaen M (2017) Automated product line test case selection: industrial case study and controlled experiment. SOSYM 16(2):417–441.  https://doi.org/10.1007/s10270-015-0462-4 CrossRefGoogle Scholar
  230. 257.
    Wang Sb, Ali S, Gotlieb A (2015) Cost-effective test suite minimization in product lines using search techniques. JSS 103:370–391.  https://doi.org/10.1016/j.jss.2014.08.024 CrossRefGoogle Scholar
  231. 258.
    White J, Benavides D, Schmidt D, Trinidad P, Dougherty B, Ruiz-Cortes A (2010) Automated diagnosis of feature model configurations. JSS 83(7):1094–1107.  https://doi.org/10.1016/j.jss.2010.02.017 CrossRefGoogle Scholar
  232. 259.
    White J, Galindo J, Saxena T, Dougherty B, Benavides D, Schmidt D (2014) Evolving feature model configurations in software product lines. JSS 87(1):119–136.  https://doi.org/10.1016/j.jss.2013.10.010 CrossRefGoogle Scholar
  233. 260.
    Wittern E, Zirpins C (2016) Service feature modeling: modeling and participatory ranking of service design alternatives. SOSYM 15(2):553–578.  https://doi.org/10.1007/s10270-014-0414-4 CrossRefGoogle Scholar
  234. 261.
    Xue Y, Zhong J, Tan T, Liu Y, Cai W, Chen M, Sun J (2016) Ibed: combining ibea and de for optimal feature selection in software product line engineering. ASCJ 49:1215–1231.  https://doi.org/10.1016/j.asoc.2016.07.040 CrossRefGoogle Scholar
  235. 262.
    Yu W, Zhang W, Zhao H, Jin Z (2014) Tdl: a transformation description language from feature model to use case for automated use case derivation. In: SPLC. ACM, pp 187–196.  https://doi.org/10.1145/2648511.2648531
  236. 263.
    Zaid L, Kleinermann F, De Troyer O (2011) Feature assembly framework: Towards scalable and reusable feature models. In: VAMOS, pp 1–9.  https://doi.org/10.1145/1944892.1944893
  237. 264.
    Zhan Z, Luo W, Guo Z, Liu Y (2017a) Feature selection optimization based on atomic set and genetic algorithm in software product line. AISC 686:93–100.  https://doi.org/10.1007/978-3-319-69096-4_14 CrossRefGoogle Scholar
  238. 265.
    Zhan Z, Zhan Y, Huang M, Liu Y (2017b) Product configuration based on feature model. AISC 686:101–106.  https://doi.org/10.1007/978-3-319-69096-4_15 CrossRefGoogle Scholar
  239. 266.
    Zhang G, Ye H, Lin Y (2014) Quality attribute modeling and quality aware product configuration in software product lines. SQJ 22(3):365–401.  https://doi.org/10.1007/s11219-013-9197-z CrossRefGoogle Scholar
  240. 267.
    Zhou F, Jiao J, Yang X, Lei B (2017) Augmenting feature model through customer preference mining by hybrid sentiment analysis. ESA 89:306–317.  https://doi.org/10.1016/j.eswa.2017.07.021 CrossRefGoogle Scholar
  241. 268.
    Zhu H, Wu L, Huang K, Zhou Z (2016) Research on methods for discovering and selecting cloud infrastructure services based on feature modeling. MPE 2016.  https://doi.org/10.1155/2016/8194832
  242. 269.
    Ziadi T, Frias L, da Silva MAA, Ziane M (2012) Feature identification from the source code of product variants. In: ECSMR. IEEE, pp 417–422.  https://doi.org/10.1109/CSMR.2012.52

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • José A. Galindo
    • 1
  • David Benavides
    • 1
  • Pablo Trinidad
    • 1
  • Antonio-Manuel Gutiérrez-Fernández
    • 1
  • Antonio Ruiz-Cortés
    • 1
  1. 1.Dept. Lenguajes y Sistemas InformáticosUniversity of SevilleSevilleSpain

Personalised recommendations