Advertisement

Phylogeography and taxonomic reassessment of Arabidopsis halleri – a montane species from Central Europe

  • Gabriela Šrámková
  • Filip Kolář
  • Eliška Záveská
  • Magdalena Lučanová
  • Stanislav Španiel
  • Martin Kolník
  • Karol MarholdEmail author
Original Article
  • 116 Downloads
Part of the following topical collections:
  1. Biogeography of the Carpathians

Abstract

Evolutionary histories of plants from the mid-elevation (montane) zone of European mountain ranges have only rarely been documented, standing in contrast to those of well-researched inhabitants of (sub-)alpine and foothill zones. To fill this gap, we have reconstructed the phylogeography of Arabidopsis halleri, a species preferring coniferous woodlands and corresponding secondary habitats in the montane zone of the Alps, Carpathians, Hercynian massif and Dinaric Alps. Based on range-wide sampling and finer-scale analyses of multiple multilocus DNA markers, we have addressed phylogeographic patterns among the Carpathian populations and inferred their relationships to A. halleri from neighbouring mountain ranges. We also present a taxonomic re-evaluation of the species in Europe, based on the revealed genetic structure complemented by morphological data. Besides two distinct Alpine groups, we identified a major phylogeographic split between the Western and South-Eastern Carpathians. Interestingly, Western and South-Eastern Carpathian populations were genetically closer to populations from neighbouring mountain ranges (the Hercynian massif and the Dinaric Alps for the Western and South-Eastern Carpathians, respectively) than they were to each other, likely reflecting long-term isolation in different parts of the Carpathians or different (re)colonization pathways during the Holocene. In spite of the considerable environmentally correlated variation, the five major European genetic groups exhibited distinctive morphological characters, and we therefore propose treating them as separate subspecies: A. halleri subsp. halleri (Western Europe, Hercynian massif), A. halleri subsp. tatrica (Western Carpathians), A. halleri subsp. ovirensis (Eastern Alps), A. halleri subsp. occidentalis (Western Alps) and A. halleri subsp. dacica (Eastern and Southern Carpathians and Dinaric Alps).

Keywords

Arabidopsis AFLPs Microsatellites Multivariate morphometrics Taxonomy 

Notes

Acknowledgements

We are grateful to all colleagues that helped us with the field sampling (see the Appendix) or provided locality data. The research was supported by the Czech Science Foundation (Grant No. 16-10809S) and by the Grant Agency VEGA, Bratislava, Slovakia (Grant No. 2/0137/17). The STRUCTURE computations were performed using resources provided by the Slovak Infrastructure for High Performance Computing (SIVVP, www.sivvp.sk).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2019_1625_MOESM1_ESM.pdf (189 kb)
Supplementary material 1 (PDF 190 kb)
606_2019_1625_MOESM2_ESM.pdf (282 kb)
Supplementary material 2 (PDF 283 kb)
606_2019_1625_MOESM3_ESM.pdf (38 kb)
Supplementary material 3 (PDF 39 kb)
606_2019_1625_MOESM4_ESM.pdf (78 kb)
Supplementary material 4 (PDF 78 kb)
606_2019_1625_MOESM5_ESM.pdf (83 kb)
Supplementary material 5 (PDF 83 kb)
606_2019_1625_MOESM6_ESM.xlsx (906 kb)
Supplementary material 6 (XLSX 907 kb)
606_2019_1625_MOESM7_ESM.xlsx (88 kb)
Supplementary material 7 (XLSX 88 kb)
606_2019_1625_MOESM8_ESM.xlsx (240 kb)
Supplementary material 8 (XLSX 241 kb)
606_2019_1625_MOESM9_ESM.pdf (49 kb)
Supplementary material 9 (PDF 49 kb)

References

  1. Albach DC, Schönswetter P, Tribsch A (2006) Comparative phylogeography of the Veronica alpina complex in Europe and North America. Molec Ecol 15:3269–3286.  https://doi.org/10.1111/j.1365-294X.2006.02980.x CrossRefGoogle Scholar
  2. Alvarez N, Manel S, Schmitt T (2012) Contrasting diffusion of Quaternary gene pools across Europe: the case of the arctic-alpine Gentiana nivalis L. (Gentianaceae). Flora Morphol Distrib Funct Ecol Pl 207:408–413.  https://doi.org/10.1016/j.flora.2012.03.006 CrossRefGoogle Scholar
  3. Bhagwat SA, Willis KJ (2008) Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? J Biogeogr 35:464–482.  https://doi.org/10.1111/j.1365-2699.2007.01861.x CrossRefGoogle Scholar
  4. Clauss MJ, Cobban H, Mitchell-Olds T (2002) Cross-species microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaeae). Molec Ecol 11:591–601.  https://doi.org/10.1046/j.0962-1083.2002.01465.x CrossRefGoogle Scholar
  5. Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Molec Ecol Notes 3:167–169.  https://doi.org/10.1046/j.1471-8286.2003.00351.x CrossRefGoogle Scholar
  6. Ehrich D (2006) AFLPDAT: a collection of R functions for convenient handling of AFLP data. Molec Ecol Notes 6:603–604.  https://doi.org/10.1111/j.1471-8286.2006.01380.x CrossRefGoogle Scholar
  7. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  8. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molec Ecol Notes 7:574–578.  https://doi.org/10.1111/j.1471-8286.2007.01758.x CrossRefGoogle Scholar
  9. Gugerli F, Englisch T, Niklfeld H, Tribsch A, Mirek Z, Ronikier M, Zimmermann NE, Holderegger R, Taberlet P (2008) Relationships among levels of biodiversity and the relevance of intraspecific diversity in conservation—a project synopsis. Perspect Pl Ecol Evol Syst 10:259–281.  https://doi.org/10.1016/j.ppees.2008.07.001 CrossRefGoogle Scholar
  10. Heufell J (1858) Enumeratio plantarum Banatus Temesiensis sponte crescentium et frequentius cultariim. Verh Zool-Bot Ges Wien 8:39–240Google Scholar
  11. Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913.  https://doi.org/10.1038/35016000 CrossRefPubMedGoogle Scholar
  12. Hohmann N, Schmickl R, Chiang TY, Lučanová M, Kolář F, Marhold K, Koch MA (2014) Taming the wild: resolving the gene pools of non-model Arabidopsis lineages. BMC Evol Biol 14:1–21.  https://doi.org/10.1186/s12862-014-0224-x CrossRefGoogle Scholar
  13. Jalas J, Suominen J (1994) Atlas florae europaeae 10. The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, HelsinkiGoogle Scholar
  14. Jasiewicz A (1965) Rośliny naczyniowe Bieszczadów Zachodnich. Monogr Bot 22:1–340Google Scholar
  15. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405.  https://doi.org/10.1093/bioinformatics/btn129 CrossRefPubMedGoogle Scholar
  16. Jones BMG, Akeyrod RJ (1993) Cardaminopsis. In: Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora europaea, 2nd edn. Cambridge University Press, Cambridge, pp 351–352Google Scholar
  17. Juřičková L, Horáčková J, Ložek V (2014) Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils. Quatern Res 82:222–228.  https://doi.org/10.1016/j.yqres.2014.01.015 CrossRefGoogle Scholar
  18. Kerner A (1870) Die natürlichen Floren im Gelände der deutschen Alpen. Fromann, JenaGoogle Scholar
  19. Klecka WR (1980) Discriminant analysis. Sage Publications, Beverly HillsCrossRefGoogle Scholar
  20. Koch MA (2019) The plant model system Arabidopsis set in an evolutionary, systematic, and spatio-temporal context. J Exp Bot 70:55–67.  https://doi.org/10.1093/jxb/ery340 CrossRefPubMedGoogle Scholar
  21. Koch MA, German DA (2013) Taxonomy and systematics are key to biological information: arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Frontiers Pl Sci 4:1–14.  https://doi.org/10.3389/fpls.2013.00267 CrossRefGoogle Scholar
  22. Koch MA, Wernisch M, Schmickl R (2008) Arabidopsis thaliana’s wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon 57:933–943CrossRefGoogle Scholar
  23. Kolář F, Fuxová G, Záveská E, Nagano AJ, Hyklová L, Lučanová M, Kudoh H, Marhold K (2016) Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Molec Ecol 25:3929–3949.  https://doi.org/10.1111/mec.13721 CrossRefGoogle Scholar
  24. Kolník M, Marhold K (2006) Distribution, chromosome numbers and nomenclature conspect of Arabidopsis halleri (Brassicaceae) in the Carpathians. Biologia (Bratislava) 61(41–50):486Google Scholar
  25. Krämer U (2010) Metal hyperaccumulation in plants. Annual Rev Pl Biol 61:517–534.  https://doi.org/10.1146/annurev-arplant-042809-112156 CrossRefGoogle Scholar
  26. Krzanowski WJ (1990) Principles of multivariate analysis. Clarendon press, OxfordGoogle Scholar
  27. Kuss P, Armbruster GFJ, Ægisdóttir HH, Scheepens JF, Stöcklin J (2011) Spatial genetic structure of Campanula thyrsoides across the European Alps: indications for glaciation-driven allopatric subspeciation. Perspect Pl Ecol Evol Syst 13:101–110.  https://doi.org/10.1016/j.ppees.2011.02.003 CrossRefGoogle Scholar
  28. Marhold K (2011) Multivariate morphometrics and its application to monography at specific and infraspecific levels. In: Stuessy TF, Lack HW (eds) Monographic plant systematics: fundamental assessment of plant biodiversity. Gantner, Ruggel, pp 73–99Google Scholar
  29. Merxmüller H (1952) Untersuchungen zur Sippengliederung und Arealbildung in den Alpen. Jahrb Vereins Schutze Alpenpfl Alpentiere 17–19:1–105Google Scholar
  30. Mráz P, Ronikier M (2016) Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biol J Linn Soc 119:528–559CrossRefGoogle Scholar
  31. Mráz P, Szela̧g Z (2004) Chromosome numbers and reproductive systems in selected species of Hieracium and Pilosella (Asteraceae) from Romania. Ann Bot Fenn 41:405–414Google Scholar
  32. Mráz P, Gaudeul M, Rioux D, Gielly L, Choler P, Taberlet P (2007) Genetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an eastern Alpine refugium. J Biogeogr 34:2100–2114.  https://doi.org/10.1111/j.1365-2699.2007.01765.x CrossRefGoogle Scholar
  33. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkCrossRefGoogle Scholar
  34. Pachschwöll C, García PE, Winkler M, Schneeweiss GM, Schönswetter P (2015) Polyploidisation and geographic differentiation drive diversification in a European high mountain plant group (Doronicum clusii aggregate, Asteraceae). PLoS ONE 10:1–30.  https://doi.org/10.1371/journal.pone.0118197 CrossRefGoogle Scholar
  35. Paun O, Schönswetter P, Winkler M, Tribsch A (2008) Historical divergence vs. contemporary gene flow: evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Molec Ecol 17:4263–4275.  https://doi.org/10.1111/j.1365-294X.2008.03908.x CrossRefGoogle Scholar
  36. Pauwels M, Saumitou-Laprade P, Holl AC, Petit D, Bonnin I (2005) Multiple origin of metallicolous populations of the pseudometallophyte Arabidopsis halleri (Brassicaceae) in central Europe: the cpDNA testimony. Molec Ecol 14:4403–4414.  https://doi.org/10.1111/j.1365-294X.2005.02739.x CrossRefGoogle Scholar
  37. Pauwels M, Roosens N, Frérot H, Saumitou-Laprade P (2008a) When population genetics serves genomics: putting adaptation back in a spatial and historical context. Curr Opin Pl Biol 11:129–134.  https://doi.org/10.1016/j.pbi.2008.01.005 CrossRefGoogle Scholar
  38. Pauwels M, Willems G, Roosens N, Frérot H, Saumitou-Laprade P (2008b) Merging methods in molecular and ecological genetics to study the adaptation of plants to anthropogenic metal-polluted sites: implications for phytoremediation. Molec Ecol 17:109–119.  https://doi.org/10.1111/j.1365-294X.2007.03486.x CrossRefGoogle Scholar
  39. Pauwels M, Vekemans X, Godé C, Frérot H, Castric V, Saumitou-Laprade P (2012) Nuclear and chloroplast DNA phylogeography reveals vicariance among European populations of the model species for the study of metal tolerance, Arabidopsis halleri (Brassicaceae). New Phytol 193:916–928.  https://doi.org/10.1111/j.1469-8137.2011.04003.x CrossRefPubMedGoogle Scholar
  40. Pax F (1898) Grundzüge der Pflanzenverbreitung in der Karpathen. 1. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  41. Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Krämer U, Yant L (2019) Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos Trans Ser B 374:20180243.  https://doi.org/10.1098/rstb.2018.0243 CrossRefGoogle Scholar
  42. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  43. Puşcaş M, Choler P (2012) A biogeographic delineation of the European Alpine System based on a cluster analysis of Carex curvula-dominated grasslands. Flora Morphol Distrib Funct Ecol Pl 207:168–178.  https://doi.org/10.1016/j.flora.2012.01.002 CrossRefGoogle Scholar
  44. Ronikier M (2011) Biogeography of high-mountain plants in the Carpathians: an emerging phylogeographical perspective. Taxon 60:373–389CrossRefGoogle Scholar
  45. Ronikier M, Cieślak E, Korbecka G (2008) High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Molec Ecol 17:1763–1775.  https://doi.org/10.1111/j.1365-294X.2008.03664.x CrossRefGoogle Scholar
  46. Ronikier M, Schneeweiss GM, Schönswetter P (2012) The extreme disjunction between Beringia and Europe in Ranunculus glacialis s. l. (Ranunculaceae) does not coincide with the deepest genetic split—a story of the importance of temperate mountain ranges in arctic-alpine phylogeography. Molec Ecol 21:5561–5578.  https://doi.org/10.1111/mec.12030 CrossRefGoogle Scholar
  47. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385.  https://doi.org/10.1126/science.1078311 CrossRefPubMedGoogle Scholar
  48. Schmitt T (2017) Molecular biogeography of the high mountain systems of Europe: an overview. In: Catalan J, Ninot JM, Aniz MM (eds) High mountain conservation in a changing world. Advances in global change research, vol 62. Springer, Berlin, pp 63–74.  https://doi.org/10.1007/978-3-319-55982-7_3 CrossRefGoogle Scholar
  49. Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732.  https://doi.org/10.2307/25065429 CrossRefGoogle Scholar
  50. Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Molec Ecol 14:3547–3555.  https://doi.org/10.1111/j.1365-294X.2005.02683.x CrossRefGoogle Scholar
  51. Šrámková-Fuxová G, Záveská E, Kolář F, Lučanová M, Španiel S, Marhold K (2017) Range-wide genetic structure of Arabidopsis halleri (Brassicaceae): glacial persistence in multiple refugia and origin of the Northern Hemisphere disjunction. Bot J Linn Soc 185:321–342.  https://doi.org/10.1093/botlinnean/box064 CrossRefGoogle Scholar
  52. Stein RJ, Höreth S, de Melo JRF, Syllwasschy L, Lee G, Garbin ML, Clemens S, Krämer U (2017) Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytol 213:1274–1286.  https://doi.org/10.1111/nph.14219 CrossRefPubMedGoogle Scholar
  53. Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613.  https://doi.org/10.1111/mec.13585 CrossRefGoogle Scholar
  54. Stolpe C, Krämer U, Müller C (2017) Heavy metal (hyper)accumulation in leaves of Arabidopsis halleri is accompanied by a reduced performance of herbivores and shifts in leaf glucosinolate and element concentrations. Environm Exp Bot 133:78–86.  https://doi.org/10.1016/j.envexpbot.2016.10.003 CrossRefGoogle Scholar
  55. Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molec Ecol 7:453–464.  https://doi.org/10.1046/j.1365-294x.1998.00289.x CrossRefGoogle Scholar
  56. Těšitel J, Malinová T, Štech M, Herbstová M (2009) Variation in the Melampyrum sylvaticum group in the Carpathian and Hercynian region: two lineages with different evolutionary histories. Preslia 81:1–22Google Scholar
  57. Thiel-Egenter C, Alvarez N, Holderegger R, Tribsch A, Englisch T, Wohlgemuth T, Colli L, Gaudeul M, Gielly L, Jogan N, Linder HP, Negrini R, Niklfeld H, Pellecchia M, Rioux D, Schönswetter P, Taberlet P, van Loo M, Winkler M, Gugerli F (2011) Break zones in the distributions of alleles and species in alpine plants. J Biogeogr 38:772–782.  https://doi.org/10.1111/j.1365-2699.2010.02441.x CrossRefGoogle Scholar
  58. Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF (eds) (2018) International code of nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the nineteenth international botanical congress Shenzhen, China, July 2017, Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten. Available at:  https://doi.org/10.12705/Code.2018
  59. Van Rossum F, Bonnin I, Fénart S, Pauwels M, Petit D, Saumitou-Laprade P (2004) Spatial genetic structure within a metallicolous population of Arabidopsis halleri, a clonal, self-incompatible and heavy-metal-tolerant species. Molec Ecol 13:2959–2967.  https://doi.org/10.1111/j.1365-294X.2004.02314.x CrossRefGoogle Scholar
  60. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of heavy metal hyperaccumulation in plants. Phytoremediat Environm Pollut 181:759–776.  https://doi.org/10.4324/9781315161549 CrossRefGoogle Scholar
  61. Vos P, Hogers R, Bleeker M, Reijans M, van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414.  https://doi.org/10.1093/nar/23.21.4407 CrossRefPubMedGoogle Scholar
  62. Wasowicz P, Pauwels M, Pasierbinski A, Przedpelska-Wasowicz EM, Babst-Kostecka AA, Saumitou-Laprade P, Rostanski A (2016) Phylogeography of Arabidopsis halleri (Brassicaceae) in mountain regions of Central Europe inferred from cpDNA variation and ecological niche modelling. PeerJ 4:e1645.  https://doi.org/10.7287/peerj.preprints.1259v1 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Willems G, Dräger DB, Courbot M, Godé C, Verbruggen N, Saumitou-Laprade P (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176:659–674.  https://doi.org/10.1534/genetics.106.064485 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Woloszczak E (1896) Z granicy flory zachodnio- i wschodnio-karpackiej. Spraw Komis Fizjogr Akad Umiejetn 31:119–159Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019
corrected publication November 2019

Authors and Affiliations

  1. 1.Department of Botany, Faculty of ScienceCharles UniversityPragueCzechia
  2. 2.Department of BotanyUniversity of InnsbruckInnsbruckAustria
  3. 3.Institute of Botany, The Czech Academy of SciencesPrůhoniceCzechia
  4. 4.Plant Science and Biodiversity Centre, Institute of BotanySlovak Academy of SciencesBratislavaSlovakia
  5. 5.Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzechia

Personalised recommendations