Advertisement

Salt marsh vegetation on the Croatian coast: plant communities and ecological characteristics

  • Zuzana Dítě
  • Róbert Šuvada
  • Pavol EliášJr.
  • Vladimír Píš
  • Daniel DítěEmail author
Original Article
  • 71 Downloads
Part of the following topical collections:
  1. Plants of the Balkan Peninsula in Space and Time

Abstract

There is a lack of a comprehensive study of eastern Adriatic salt marsh vegetation with special attention to plant–soil relationships that determine individual plant assemblages. We surveyed 41 sites of salt marshes on the Croatian coastline in order to classify their vegetation by numerical methods and to compare the resulting groups in terms of soil chemical properties. A clear zonation between plant communities along the hydro-sequence was identified and was well represented by the dominance of individual diagnostic species. Two large vegetation groups were detected, well distinguished by mean species richness and soil properties. The first group, assigned into the classes Thero-Salicornietea and Sarcocornietea fruticosae, contains three subgroups of succulent, sparse stands of species-poor vegetation on the mudflat zone flooded by sea water, characterised by high salinity, electric conductivity, exchangeable Mg and K, and low nutrient content (total nitrogen, organic carbon) of the substrate. In the second group, tall rush communities (class Juncetea maritimi), three subordinate clusters, were identified, occurring in the upper, brackish zone with infrequent tides. Their soils had low salinity and electric conductivity and increased total nitrogen, organic carbon and exchangeable Mg and Ca. Vegetation within the second group occurring in the uppermost tidal zone had the highest species-richness, nutrient content in the soil and the lowest salinity. It has not been previously identified. Here, we described it as the new association Limonio narbonensisCaricetum divisae.

Keywords

Brackish swards Coastal habitats Eastern Adriatic Phytosociology Soil chemical properties Succulent vegetation 

Notes

Acknowledgements

The study was financially supported by Grant VEGA No. 2/0001/16. Special thanks to Mario Klesczewski for sharing his field experience from the Rhône delta, France.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2019_1617_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1389 kb)
606_2019_1617_MOESM2_ESM.doc (89 kb)
Supplementary material 2 (DOC 89 kb)

References

  1. Adam P (1981) The vegetation of British saltmarshes. New Phytol 88:143–196.  https://doi.org/10.1111/j.1469-8137.1981.tb04577.x CrossRefGoogle Scholar
  2. Adam P (1990) Saltmarsh ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Alegro A, Šegota V, Koletić N, Vuković N, Vilović T, Rimac A (2019) Glaux maritima L. (Primulaceae), a new plant species in SE Europe. Acta Bot Croat 78:95–98.  https://doi.org/10.2478/botcro-2018-0021 CrossRefGoogle Scholar
  4. Allen JRL, Pye K (1992) Coastal saltmarshes: their nature and importance. In: Allen JRL, Pye K (eds) Saltmarshes: Morphodynamics, conservation and engineering significance. Cambridge University Press, Cambridge, pp 1–18Google Scholar
  5. Andreucci F (2004) La vegetazione alofila della laguna di Orbetello (Toscana, Grosseto). Fitosociologia 41:31–49Google Scholar
  6. Antisari LV, Ferronato C, Pellegrini E, Boscutti F, Casolo V, de Nobili M, Vianello G (2017) Soil properties and plant community relationship in a saltmarsh of the Grado and Marano lagoon (northern Italy). J Soils Sediments 17:1862–1873.  https://doi.org/10.1007/s11368-016-1510-6 CrossRefGoogle Scholar
  7. Apaydin Z, Kutbay H, Ozbucak T, Yalcin E, Bilgin A (2009) Relationship between vegetation zonation and edaphic factors in a salt-marsh community (Black Sea Coast). Polish J Ecol 57:99–112Google Scholar
  8. Artegiani A, Paschini E, Russo A, Bregant D, Raicich F, Pinardi N (1997) The Adriatic Sea general circulation. Part I: air–sea interactions and water mass structure. J Phys Oceanogr 27:1492–1514.  https://doi.org/10.1175/1520-0485(1997)027%3c1492:TASGCP%3e2.0 CrossRefGoogle Scholar
  9. Barkmann JJ, Doing H, Segal S (1964) Kritische bemerkungen und vorschläge zur quantitativen vegetationsanalyse. Acta Bot Neerl 13:394–419CrossRefGoogle Scholar
  10. Beeftink WG (1977) Salt-marshes. In: Barnes RSK (ed) The Coastline. Wiley, London, pp 93–122Google Scholar
  11. Bertness MD, Wikler K, Chatkupt T (1992) Flood tolerance and the distribution of Iva frutescens across New England salt marshes. Oecologia 91:171–178.  https://doi.org/10.1007/BF00317780 CrossRefPubMedGoogle Scholar
  12. Borhidi A, Kevey B, Lendvai G (2012) Plant communities of Hungary. Akadémiai Kiadó, BudapestGoogle Scholar
  13. Brinkman R (1980) Saline and sodic soils. In: Land Reclamation and Water Management, International Institute for Land reclamation and Improvemnt, Wageningen, Publication No. 27, pp 62–72Google Scholar
  14. Brullo S, Brullo C, Cambria S, Giusso del Galdo G, Minissale P (2017) Phytosociological investigation on the class Crithmo maritimi-Limonietea in Greece. Pl Sociol 54:3–57.  https://doi.org/10.7338/pls2017541/01 CrossRefGoogle Scholar
  15. Caniglia G, Conti G, Fusco M, Anoè N, Zanobi A (1997) Confronto su base vegetazionale tra due barene della Laguna di Venezia. Fitosociologia 34:111–119.  https://doi.org/10.2478/s11756-013-0283-2 CrossRefGoogle Scholar
  16. Chapman VJ (1960) Salt marshes and salt deserts of the world. In: Polunin N (ed) Plant science monographs. Leonard Hill (Books) Ltd, LondonGoogle Scholar
  17. Chytrý M, Otýpková Z (2003) Plot sizes used for phytosociological sampling of European vegetation. J Veg Sci 14:563–570.  https://doi.org/10.1111/j.1654-1103.2003.tb02183.x CrossRefGoogle Scholar
  18. Chytrý M, Tichý L, Holt J, Botta-Dukát J (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90.  https://doi.org/10.1658/1100-9233(2002)013%5b0079:DODSWS%5d2.0.CO;2 CrossRefGoogle Scholar
  19. Cushman-Roisin B, Naimie CE (2002) A 3D finite-element model of the Adriatic tides. J Mar Syst 37:279–297.  https://doi.org/10.1016/S0924-7963(02)00204-X CrossRefGoogle Scholar
  20. Cutini M, Agostinelli E, Acosta TRA, Molina JA (2010) Coastal salt-marsh zonation in Tyrrhenian central Italy and its relationship with other Mediterranean wetlands. Pl Biosyst 144:1–11.  https://doi.org/10.1080/11263500903178117 CrossRefGoogle Scholar
  21. Dijkema KS (1990) Salt and brackish marshes around the Baltic Sea and their adjacent parts of the North Sea: their vegetation and management. Biol Conservation 51:191–209.  https://doi.org/10.1016/0006-3207(90)90151-E CrossRefGoogle Scholar
  22. Dítě D, Melečková Z, Šuvada R, Píš V, Eliáš P Jr (2015) The phytosociology and ecology of saline vegetation with Scorzonera parviflora in the Pannonian-Western Balkan gradient. Phytocoenologia 45:33–47.  https://doi.org/10.1127/phyto/2015/0007 CrossRefGoogle Scholar
  23. Dítě D, Dítětová D, Eliáš P Jr, Šuvada R (2018) Rare plant species of salt marshes of the Croatian coast. Hacquetia 17:221–234.  https://doi.org/10.1515/hacq-2018-0002 CrossRefGoogle Scholar
  24. Donker M, Stevelink A (1961) Einige Wiesenvegetationen (Gaudinieto-Arrhenatheretum; Molinietum mediterraneum; Caricetum divisae) im Vistre-Tal bei Le Cailar. S.I.G.M.A., Com. 154, Meded Landbouwhogeschoolte Wageningen 61:1–32Google Scholar
  25. Dring J, Hoda P, Mersinliari M, Mullaj A, Pignatti S, Rodwell R (2002) Plant communities of Albania—a preliminary overview. Ann Bot 2:7–30Google Scholar
  26. EEA (European Environmental Agency) (2019) EIONET Habitat assessments: European Topic Centre on Biological Diversity. Available at: https://www.eionet.europa.eu/. Accessed 25 Mar 2019
  27. Eliáš P Jr, Sopotlieva D, Dítě D, Hájková P, Apostolova I, Senko D, Melečková Z, Hájek M (2013) Vegetation diversity of salt-rich grasslands in the south-east Europe. Appl Veg Sci 16:521–537.  https://doi.org/10.1111/avsc.12017 CrossRefGoogle Scholar
  28. Euro + Med (2006 − 2014) Euro + Med PlantBase—the information resource for Euro- Mediterranean plant diversity. Avaliable at: http://ww2.bgbm.org/EuroPlusMed/. Accessed 19 Feb 2018
  29. Ferrari C, Gerdol R, Piccoli F (1995) The halophilous vegetation of the Po Delta (northern Italy). Vegetatio 61:5–14.  https://doi.org/10.1007/BF00039805 CrossRefGoogle Scholar
  30. Géhu JM (1998) Schéma synsystématique des principales classes de végétations littorales sédimentaires européennes avec références à d’autres territoires holarctique. Ann Bot 56:1–48Google Scholar
  31. Géhu JM, Biondi E (1996) Synoptique des associations végétales du littoral Adriatique Italien. Giorn Bot Ital 130:257–270.  https://doi.org/10.1080/11263509609439535 CrossRefGoogle Scholar
  32. Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12:589–591.  https://doi.org/10.2307/3237010 CrossRefGoogle Scholar
  33. Hill MO (1979) TWINSPAN. A Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, IthacaGoogle Scholar
  34. Horvatić S (1934) Flora i vegetacija otoka Paga. Prir Istraž Kral Jugoslavije 19:116–372Google Scholar
  35. Imeri A, Mullaj A, Dodona E, Kupe L (2010) Costal vegetation of the Lalzi bay (Albania). Bot Serbica 34:99–105Google Scholar
  36. Jasprica N, Milović M, Kovačić S, Stamenković V (2016) Phytocoenotic diversity of the NE-Adriatic island of Olib. Pl Sociol 53:55–81.  https://doi.org/10.7338/pls2016531/04 CrossRefGoogle Scholar
  37. Kadereit G, Ball P, Beer S, Mucina L, Sokoloff D, Teege P, Yaprak AE, Freitag H (2007) A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae). Taxon 56:1143–1170.  https://doi.org/10.2307/25065909 CrossRefGoogle Scholar
  38. Kadereit G, Piirainen M, Lambinon J, Vanderpoorte NA (2012) Cryptic taxa should have names. Reflections on the glasswort genus Salicornia (Amaranthaceae). Taxon 61:1227–1239.  https://doi.org/10.1002/tax.616005 CrossRefGoogle Scholar
  39. Kaligarič M, Škornik S (2006) Halophile vegetation of the Slovenian seacoast: thero-Salicornietea and Spartinetea maritimae. Hacquetia 5:25–36Google Scholar
  40. Kaligarič M, Škornik S (2007) Vegetation of tall rush saltmarshes (Juncetea maritimae) and saltmarsh scrubs (Arthrocnemetea fruticosae) on the Slovenian seacoast. Annales 17:47–58Google Scholar
  41. Kamenjarin J, Pavletić Z (2002) Vegetation of Pantana area at Kaštela bay and its protection problems. Hacquetia 1:185–192Google Scholar
  42. Király G, Bidló A, Takács T, Eliáš P Jr, Melečková Z, Dítě D (2013) The occurrence of the littoral sedge species, Carex extensa (Cyperaceae) in the Pannonian Basin, Hungary. Biologia 68:872–878.  https://doi.org/10.2478/s11756-013-0219-x CrossRefGoogle Scholar
  43. Koull N, Chehma A (2016) Soil characteristics and plant distribution in saline wetlands of Oued Righ, northeastern Algeria. J Arid Land 8:948–959.  https://doi.org/10.1007/s40333-016-0060-5 CrossRefGoogle Scholar
  44. Lovrić AZ (1974) Zonation and succession in brackish environments of the Eastern Adriatic. Hydrobiol Bull 8:166–171.  https://doi.org/10.1007/BF02254916 CrossRefGoogle Scholar
  45. Magaš D (2000) Contribution to the knowledge of the geographical characteristics of the Pag island. Geoadria 5:5–48.  https://doi.org/10.15291/geoadria.153 CrossRefGoogle Scholar
  46. Melečková Z, Dítě D, Eliáš P Jr (2014) Scorzonero-Juncetea gerardii. In: Hegedüšová Vantarová K, Škodová I (eds) Rastlinné spoločenstvá Slovenska 5. Travinno-bylinná vegetácia. Veda, Bratislava, pp 513–532Google Scholar
  47. Merloni N (2007) Gli habitat di interesse comunitario (Direttiva 92/43/CEE) nella Riserva Naturale Sacca di Bellocchio (province di Ravenna e Ferrara). Fitosociologia Suppl: 83–88Google Scholar
  48. Merloni N, Piccoli F (2007) Comunità vegetali rare e minacciate delle stazioni ravennati del Parco del Delta del Po (Regione Emilia-Romagna). Fitosociologia 44:67–76Google Scholar
  49. Mesleard F, Yavercovski N, Dutoit T (2016) Photoperiod buffers responses to salt and temperature during germination of two coastal salt marsh colonizers Juncus acutus and Juncus maritimus. Pl Biosyst 150:1156–1164.  https://doi.org/10.1080/11263504.2015.1007898 CrossRefGoogle Scholar
  50. Mitić B, Topić J, Kovavić S, Jasprica N, Alegro A, Milović M, Dobrović I, Rešetnik I, Cigić P, Ruščić M, et al (2009) Kartiranje flore Dalmacije—Prioritetna područja: otok Pag, estuarij Krke, otok Vis i pučinski otoci, Pelješac i Mljet, otok Cetine Prirodoslovno-matematički fakultet, ZagrebGoogle Scholar
  51. Moreno J, Terrones A, Juan A, Alonso MA (2018) Halophytic plant community patterns in Mediterranean saltmarshes: shedding light on the connection between abiotic factors and the distribution of halophytes. Pl Soil 430:185–204.  https://doi.org/10.1007/s11104-018-3671-0 CrossRefGoogle Scholar
  52. Nikolić T (ed) (2018) Flora Croatica. Avaliable at: http://hirc.botanic.hr/fcd. Accessed Feb 2018
  53. Ostroški L (ed) (2010) Statistical yearbook of Croatia 2010. Croatian Bureau of Statistics, ZagrebGoogle Scholar
  54. Pandža M, Franjić J, Škvorc Z (2007) The salt marsh vegetation on the East Adriatic coast. Biologia 62:24.  https://doi.org/10.2478/s11756-007-0003-x CrossRefGoogle Scholar
  55. Papastergiadou E, Babalonas D (1996) Salt marshes and sand dune ecosystems in the Northern Aegean coastal areas. In: Salman AH, Langeveld MJ, Bonazoutas M (eds) Coastal management and habitat conservation. EUCC, Leiden, pp 65–74Google Scholar
  56. Pätsch R, Bruchmann I, Schellenberg J, Meisert A, Bergmeier E (2019) Elytrigia repens co-occurs with glycophytes rather than characteristic halophytes in low-growing salt meadows on the southern Baltic Sea coast. Biologia 74:385–394.  https://doi.org/10.2478/s11756-019-00195-1 CrossRefGoogle Scholar
  57. Pennings SC, Callaway RM (1992) Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73:681–690.  https://doi.org/10.2307/1940774 CrossRefGoogle Scholar
  58. Pikelj K, Juračić M (2013) Eastern Adriatic Coast (EAC): geomorphology and coastal vulnerability of a karstic coast. J Coastal Res 29:944–957.  https://doi.org/10.2112/JCOASTRES-D-12-00136.1 CrossRefGoogle Scholar
  59. Pirone G (1995) La vegetazione alofila della costa abruzzese (Adriatico centrale). Fitosociologia 30:233–256Google Scholar
  60. Poldini L, Vidali M, Fabiani ML (1999) La vegetazione del litorale sedimentario del Friuli-Venezia Giulia (NE Italia) con riferimenti alla regione alto-Adriatica. Stud Geobot 17:3–68Google Scholar
  61. QGIS Development Team 2018. QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org
  62. R Development Core Team (2008) R: A language and environment for statistical computing. Vienna (AT): R Foundation for Statistical Computing. Available at: http://www.R-project.org
  63. Rivas-Martínez S, Fernández-González F, Loidi J, Lousã M, Penas A (2001) Lista sintaxonómica de comunidades de plantas vasculares de España y Portugal hasta el nivel de asociación. Itin Geobot 14:5–341Google Scholar
  64. Rogel JA., Ariza FA, Silla, RO (2000) Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain Wetlands 20:357–372. Available at:  https://doi.org/10.1672/0277-5212(2000)020%5b0357:SSAMGA%5d2.0.CO;2 CrossRefGoogle Scholar
  65. Rufo L, de la Fuente V, Sánchez-Mata D (2016) Sarcocornia plant communities of the Iberian Peninsula and the Balearic Islands. Phytocoenologia 46:383–396.  https://doi.org/10.1127/phyto/2016/0113 CrossRefGoogle Scholar
  66. Šajna N, Regvar M, Kaligarič S, Škvorc Ž, Kaligarič M (2013) Germination characteristics of Salicornia patula Duval-Jouve, S. emerici Duval-Jouve, and S. veneta Pign. et Lausi and their occurrence in Croatia. Acta Bot Croat 72:347–358.  https://doi.org/10.2478/botcro-2013-0011 CrossRefGoogle Scholar
  67. Sarika M (2012) Flora and vegetation of some coastal ecosystems of Sterea Ellas and eastern continental Greece. Lazaroa 33:65–99.  https://doi.org/10.5209/rev-LAZA.2012.v33.40282 CrossRefGoogle Scholar
  68. Sciandrello S, Tomaselli V (2014) Coastal salt-marshes plant communities of the Salicornietea fruticosae class in Apulia (Italy). Biologia 69:53–69.  https://doi.org/10.2478/s11756-013-0283-2 CrossRefGoogle Scholar
  69. Sedlar Z, Alegro A, Radović A, Brigić A, Hršak V (2018) Extreme land-cover and biodiversity change as an outcome of land abandonment on a Mediterranean island (eastern Adriatic). Pl Biosyst 152:728–737.  https://doi.org/10.1080/11263504.2017.1330774 CrossRefGoogle Scholar
  70. Shehu J, Imeri A, Koci R, Mullaj A (2014) Coastal salt-marshes in Albania. Albanian J Agric Sci (Special Ed): 47–51Google Scholar
  71. Silvestri S, Defina A, Marani M (2005) Tidal regime, salinity and salt marsh plant zonation. Estuarine Coastal Shelf Sci 62:119–130.  https://doi.org/10.1016/j.ecss.2004.08.010 CrossRefGoogle Scholar
  72. Škvorc Ž, Jasprica N, Alegro A, Kovačić S, Franjić J, Krstonošić D, Vraneša A, Čarni A (2017) Vegetation of Croatia: phytosociological classification of the high-rank syntaxa. Acta Bot Croat 76:200–224.  https://doi.org/10.1515/botcro-2017-0014 CrossRefGoogle Scholar
  73. Slavnić Ž (1948) Slatinska vegetacija Vojvodine. Arhiv za poljoprivredne nauke i tehniku 4:55–76Google Scholar
  74. Sotáková S, Hanes J, Sisák P, Slovík R, Zaujec A (1988) Návody na cvičenia z geológie a pôdoznalectva. Príroda, BratislavaGoogle Scholar
  75. Speranza M, D’Arco M, Ferroni L (2015a) Ecological performances of plant species of halophilous hydromorphic ecosystems. EQA 19:55–70.  https://doi.org/10.6092/issn.2281-4485/6004 CrossRefGoogle Scholar
  76. Speranza M, D’Arco M, Ferroni L (2015b) Ecological performances of plant species of halophilous hydromorphic ecosystems. Environm Qual 19:55–70Google Scholar
  77. Stančić Z, Brigić A, Liber Z, Rusak G, Franjić J, Škvorc Z (2008) Adriatic coastal plant taxa and communities of Croatia and their threat status. Acta Bot Gallica 155:179–199.  https://doi.org/10.1080/12538078.2008.10516103 CrossRefGoogle Scholar
  78. STN ISO 10694 (2001) Kvalita pôdy. Stanovenie organického a celkového uhlíka po suchom spaľovaní (elementárna analýza). SÚTN, BratislavaGoogle Scholar
  79. STN ISO 13536 (2001) Kvalita pôdy. Stanovenie potenciálnej katiónovej výmennej kapacity a obsahu vymeniteľných katiónov za použitia tlmivého roztoku chloridu bárnatého s hodnotou pH = 8.1. SÚTN, BratislavaGoogle Scholar
  80. Ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and users guide to Canoco for Windows. Software for Canonical Community Ordination (version 4). Centre of Biometry, WageningenGoogle Scholar
  81. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453.  https://doi.org/10.1111/j.1654-1103.2002.tb02069.x CrossRefGoogle Scholar
  82. Tzonev R, Lysenko T, Gusev C, Zhelev P (2008) The Halophytic Vegetation in South-East Bulgaria and Along the Black Sea Coast. Hacquetia 7:95–121CrossRefGoogle Scholar
  83. Vicherek J (1973) Die Pflanzengsellschaften der Halophyten und Subhalophytenvegetation der Tschechoslowakei. Vegetace ČSSR, Ser. A5. Academia, PrahaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of SciencesBratislavaSlovakia
  2. 2.Administration of the Slovenský kras National ParkBrzotínSlovakia
  3. 3.Department of BotanySlovak University of AgricultureNitraSlovakia
  4. 4.Soil Science and Conservation Research InstituteBratislavaSlovakia

Personalised recommendations