Phylogeny of Hymenophyllum subg. Mecodium (Hymenophyllaceae), with special focus on the diversity of the Hymenophyllum polyanthos species complex

  • Diego T. VasquesEmail author
  • Atsushi Ebihara
  • Regina Y. Hirai
  • Jefferson Prado
  • Ito Motomi
Original Article


Hymenophyllum subg. Mecodium (Hymenophyllaceae) is represented by ca. 35 epiphytic species. Past reports suggest that Hymenophyllum polyanthos (Sw.) Sw., a pantropical species, does not represent a monophyletic grouping as it is recognized today. This research focuses on the H. polyanthos species complex, while comparing it to other species of subg. Mecodium using molecular and morphological traits. Here, chloroplast gene sequences of the atpB, atpB–rbcL–accD, rps4–trnS, and matK regions of 132 samples are compared under phylogenetic analyses and the resulting trees are discussed according to distributional and morphological differences. As a result, two big clades can be observed within Mecodium: one represented by plants distributed through Malesia, Australia, Pacific islands, Indian Ocean, and southern South America, and the other represented by plants occurring in Central and South America, Africa, and Asia. Hymenophyllum polyanthos samples appear interspersed in the phylogeny, evidencing its polyphyletic status. Main lineages identified here as H. polyanthos include: (1) plants from the Neotropics, closely related to species like H. myriocarpum Hook. and H. undulatum Sw., and probably representative of the type lineage for the species; (2) several independent lineages within the Asian samples; and (3) two distinct lineages distributed from Malesia and Pacific regions to South and Central America. The combination of distributional patterns and a morphological analysis of seven leaf traits suggests that these lineages are mostly sympatric and show a morphological variation that overlaps with each other.


Hymenophyllaceae Hymenophyllum polyanthos Mecodium Plastid markers Polyphyletic species 



We acknowledge Drs. Joel Nitta (National Museum of Nature and Science, Japan) and Germinal Rouhan (Museúm National d’Histoire Naturelle, Paris) for initial suggestions and for providing us with samples to be included in our analysis. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. Finally, we confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Supplementary material

606_2019_1609_MOESM1_ESM.docx (67 kb)
Supplementary material 1 (DOCX 67 kb)
606_2019_1609_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 17 kb)
606_2019_1609_MOESM3_ESM.fas (371 kb)
Supplementary material 3 (FAS 371 kb)
606_2019_1609_MOESM4_ESM.fas (378 kb)
Supplementary material 4 (FAS 377 kb)


  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  2. Bosch RB (1861) Hymenophyllaceas novas. Ned Kruidk Arch 5:135–185Google Scholar
  3. Copeland EB (1937) Hymenophyllum. Philipp J Sci 64:1–188Google Scholar
  4. Copeland EB (1938) Genera hymenophyllacearum. Philipp J Sci 67:1–110Google Scholar
  5. Cortez L (2001) Pteridofitas epifitas encontradas en Cyatheaceae y Dicksoniaceae de los bosques nublados de Venezuela. Gayana Bot 58:13–23CrossRefGoogle Scholar
  6. Del Rio C, Hennequin S, Rouhan G, Lowry II, Porter P, Dubuisson JY, Gaudeul M (2017) Origins of the fern genus Hymenophyllum (Hymenophyllaceae) in New Caledonia: multiple independent colonizations from surrounding territories and limited in situ diversification. Taxon 66:1041–1064CrossRefGoogle Scholar
  7. Dubuisson JY, Le Pechon T, Bauret L, Rouhan G, Reeb C, Boucheron-Dubuisson E, Selosse MA, Chanssidon C, Dajoz I, Pynee K, Grangaud E, Robert Y, Tamon JM, Hennequin S (2018) Disentangling the diversity and taxonomy of Hymenophyllaceae (Hymenophyllales, Polypodiidae) in the Mascarene archipelago, with ecological implications. Phytotaxa 375:1–58. CrossRefGoogle Scholar
  8. Duffy AM, Stensvold MC, Farrar DR (2015) Independent gametophytes of Hymenophyllum wrightii in North America: not as rare as we thought. Amer Fern J 105:45–55. CrossRefGoogle Scholar
  9. Dyer RJ, Savolainen V, Schneider H (2012) Apomixis and reticulate evolution in the Asplenium monanthes fern complex. Ann Bot (Oxford) 110:1515–1529. CrossRefGoogle Scholar
  10. Ebihara A (2016) The standard of ferns and lycophytes in Japan, vol. I. Gakken Plus, Tokyo (in Japanese)Google Scholar
  11. Ebihara A, Iwatsuki K, Ohsawa TA, Ito M (2003) Hymenophyllum paniense (Hymenophyllaceae), A New Species of Filmy Fern from New Caledonia. Syst Bot 28:228–235Google Scholar
  12. Ebihara A, Ishikawa H, Matsumoto S, Lin SJ, Iwatsuki K, Takamiya M, Watano Y, Ito M (2005) Nuclear DNA, chloroplast DNA, and ploidy analysis clarified biological complexity of the Vandenboschia radicans complex (Hymenophyllaceae) in Japan and adjacent areas. Amer J Bot 92:1535–1547. CrossRefGoogle Scholar
  13. Ebihara A, Dubuisson JY, Iwatsuki K, Hennequin S, Ito M (2006) A taxonomic revision of Hymenophyllaceae. Blumea 51:221–280CrossRefGoogle Scholar
  14. Ebihara A, Nitta JH, Iwatsuki K (2010) The Hymenophyllaceae of the Pacific area. 2. Hymenophyllum (excluding subgen. Hymenophyllum). Bull Natl Mus Nat Sci Ser B Bot 36:43–59Google Scholar
  15. Fraser-Jenkins CR (2008) Taxonomic revision of three hundred Indian subcontinental pteridophytes: with a revised census list; a new picture of fern-taxonomy and nomenclature in the Indian subcontinent. Bishen Singh Mahendra Pal Singh, Dehra DunGoogle Scholar
  16. Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Rev Ecol Evol S 34:397–423CrossRefGoogle Scholar
  17. Geyer CJ (1991) Markov chain Monte Carlo maximum likelihood. In: Keramidas EM (ed) Computing science and statistics: proceedings of the 23rd symposium on the interface. Interface Foundation of North America, Fairfax Station, pp 156–163Google Scholar
  18. Hennequin S, Ebihara A, Ito M, Iwatsuki K, Dubuisson JY (2003) Molecular systematics of the fern genus Hymenophyllum s.l. (Hymenophyllaceae) based on chloroplastic coding and noncoding regions. Molec Phylogen Evol 27:283–301CrossRefGoogle Scholar
  19. Hennequin S, Ebihara A, Ito M, Iwatsuki K, Dubuisson JY (2006) New insights into the phylogeny of the genus Hymenophyllum s.l. (Hymenophyllaceae): revealing the polyphyly of Mecodium. Syst Bot 31:271–284.
  20. Hennequin S, Ebihara A, Dubuisson JY, Schneider H (2010) Chromosome number evolution in Hymenophyllum (Hymenophyllaceae) with special reference to the subgenus Hymenophyllum. Molec Phylogen Evol 55:47–59. CrossRefGoogle Scholar
  21. Hori K, Tono A, Fujimoto K, Kato J, Ebihara A, Watano Y, Murakami N (2014) Reticulate evolution in the apogamous Dryopteris varia complex (Dryopteridaceae, subg. Erythrovariae, sect. Variae) and its related sexual species in Japan. J Pl Res 127:661–684. CrossRefGoogle Scholar
  22. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefGoogle Scholar
  23. Iwatsuki K (1961) The occurrence of Mecodium wrightii in Canada. Amer Fern J 51:141–144CrossRefGoogle Scholar
  24. Iwatsuki K, Boufford DE, Ohba H (eds) (1995) Flora of Japan: pteridophyta and gymnospermae, vol. 1. Kodansha, TokyoGoogle Scholar
  25. Jørgensen PM (1999) Hymenophyllaceae. In: Jørgensen PM, León-Yánez S (eds) Catalogue of the vascular plants of Ecuador. Monographs in systematic botany, vol. 75. Missouri Botanical Garden, St. Louis, pp 142–147Google Scholar
  26. Jørgensen PM, Nee MH, Beck SG (eds) (2014) Catálogo de las plantas vasculares de Bolivia. Monographs in systematic botany, vol. 127. Missouri Botanical Garden, St. LouisGoogle Scholar
  27. Kumar S, Stecher G, Tamura K (2016) MEGA 7: molecular evolutionary genetic analysis version 7.0 for bigger datasets. Molec Biol Evol 33:1870–1874CrossRefGoogle Scholar
  28. Kuo LY, Li FW, Chiou WL, Wang CN (2011) First insights into fern matK phylogeny. Molec Phylogen Evol 59:556–566. CrossRefGoogle Scholar
  29. Larsen C (2014) Estudios sistemáticos y biogeográficos en Hymenophyllum (Hymenophyllaceae) en Sudamérica Subtropical y Templada. PhD Thesis, Universidad Nacional de La Plata, La PlataGoogle Scholar
  30. Liu JX, Zhang QY, Ebihara A, Iwatsuki K (2013) Hymenophyllaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China 2–3 (Pteridophytes). Science Press, Beijing, pp 93–109Google Scholar
  31. Mickel JT, Smith AR (2004) The pteridophytes of Mexico. Mem New York Bot Gard 88:1–1054Google Scholar
  32. Nadot S, Bajon R, Lejeune B (1994) The chloroplast gene rps4 as a tool for the study of Poaceae phylogeny. Pl Syst Evol 191:27–38CrossRefGoogle Scholar
  33. Nitta JH, Ebihara A, Ito M (2011) Reticulate evolution in the Crepidomanes minutum species complex (Hymenophyllaceae). Amer J Bot 98:1782–1800. CrossRefGoogle Scholar
  34. PPG I (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54:563–603.  CrossRefGoogle Scholar
  35. Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Amer J Bot 91:1582–1598CrossRefGoogle Scholar
  36. Rambaut A (2012) Tree figure drawing tool version 1.4.0. Institute of Evolutionary Biology, University of Edinburgh, EdinburghGoogle Scholar
  37. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefGoogle Scholar
  38. RStudio Team (2015) RStudio: integrated development for R. Available at: Accessed 5 Oct 2017
  39. Serizawa S (1983) A new species of Mecodium (Hymenphyllaceae) from Central Honshu of Japan. J Japan Bot 58:62–65Google Scholar
  40. Smith AR, Mickel JT, Øllgaard B, Moran RC, Hickey RJ, Johnson D (1985) Pteridophytes of Venezuela, an annotated list. University of California, BerkeleyGoogle Scholar
  41. Souza-Chies TT, Bittar G, Nadot S (1997) Phylogenetic analysis of lridaceae with parsimony and distance methods using the plastid gene rps4. Pl Syst Evol 204:109–123CrossRefGoogle Scholar
  42. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefGoogle Scholar
  43. Swartz OP (1788) Nova genera & species plantarum seu prodromus descriptionum vegetalium, maximam partem incognitorum quæ sub itinere in Indiam occidentalem annis 1783–1787. M. Swederi, Holmiae, Upsala, AboGoogle Scholar
  44. Taylor TMC (1967) Mecodium wrightii in British Columbia and Alaska. Amer Fern J 57:1–6CrossRefGoogle Scholar
  45. Tryon RM, Stolze RG (1989) Pteridophyta of Peru. Part I. 1. Ophioglossaceae—12. Cyatheaceae. Fieldiana Bot 20:49–78Google Scholar
  46. Wolf PG (1997) Evaluation of nucleotide sequences for phylogenetic studies of ferns and other pteridophytes. Amer J Bot 84:1429–1440CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Global Communication Strategies, College of Arts and SciencesThe University of TokyoTokyoJapan
  2. 2.Department of BotanyNational Museum of Nature and ScienceTsukuba-shiJapan
  3. 3.Instituto de BotânicaSão PauloBrazil
  4. 4.Department of General System Studies, College of Arts and SciencesThe University of TokyoTokyoJapan

Personalised recommendations