Advertisement

Heterologous expression of ELF4 from Chlamydomonas reinhardtii and Physcomitrella patens delays flowering in Arabidopsis thaliana

  • Hang Zhao
  • Ke Lin
  • Shuo Gan
  • Gang LiEmail author
Original Article
  • 24 Downloads

Abstract

The circadian clock perceives seasonal changes in day length and temperature and then regulates numerous internal cellular processes. Arabidopsis thaliana EARLY FLOWERING4 (ELF4) is a key circadian clock component that is involved in transcriptional regulation of the central oscillator and multiple output pathways. However, the functions of ELF4 orthologues in other organisms are poorly understood. Here, we identified ELF4 orthologous genes in two non-flowering organisms, the unicellular green alga Chlamydomonas (CrELF4) and the moss Physcomitrella patens (PpELF4). Constitutive expression of CrELF4 and PpELF4 in the Arabidopsis elf4 mutant not only completely rescued its early flowering phenotype, but also induced late flowering. This was associated with decreased transcript levels of CONSTANS (CO) and FLOWERING LOCUS T (FT), two key positive regulators of flowering-time pathways. In addition, expression of CrELF4 and PpELF4 in the Arabidopsis elf4 mutant inhibited hypocotyl elongation and altered the expression of circadian clock-related genes. Taken together, these data suggest that ELF4 orthologous genes in Chlamydomonas and Physcomitrella share an evolutionary conserved role with Arabidopsis ELF4 and indicate that the plant clock component ELF4 is functionally conserved from basal plants to angiosperms.

Keywords

Circadian clock CrELF4 ELF4 Flowering time Hypocotyl PpELF4 

Notes

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (31870266).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

606_2019_1606_MOESM1_ESM.pdf (201 kb)
Supplementary material 1 (PDF 200 kb)
606_2019_1606_MOESM2_ESM.pdf (158 kb)
Supplementary material 2 (PDF 157 kb)
606_2019_1606_MOESM3_ESM.pdf (217 kb)
Supplementary material 3 (PDF 216 kb)
606_2019_1606_MOESM4_ESM.pdf (207 kb)
Supplementary material 4 (PDF 206 kb)

References

  1. Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883.  https://doi.org/10.1126/science.1061320 CrossRefGoogle Scholar
  2. Chen W, Qin Q, Zhang C, Zheng Y, Wang C, Zhou M, Cui Y (2015) DhEFL2, 3 and 4, the three EARLY FLOWERING4-like genes in a Doritaenopsis hybrid regulate floral transition. Pl Cell Rep 34:2027–2041.  https://doi.org/10.1007/s00299-015-1848-z CrossRefGoogle Scholar
  3. Corellou F, Schwartz C, Motta JP, Djouani-Tahri EB, Sanchez F, Bouget FY (2010) Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus. Pl Cell 21:3436–3449.  https://doi.org/10.1105/tpc.109.068825 Google Scholar
  4. Creux N, Harmer S (2019) Circadian rhythms in plants. Cold Spring Harb Perspect Biol (Online First).  https://doi.org/10.1101/cshperspect.a034611 Google Scholar
  5. Devlin PF (2002) Signs of the time: environmental input to the circadian clock. J Exp Bot 53:1535–1550.  https://doi.org/10.1093/jxb/erf024 CrossRefGoogle Scholar
  6. Dodd AN et al (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633.  https://doi.org/10.1126/science.1115581 CrossRefGoogle Scholar
  7. Doyle MR et al (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419:74–77.  https://doi.org/10.1038/nature00954 CrossRefGoogle Scholar
  8. Ezer D et al (2017) The evening complex coordinates environmental and endogenous signals in Arabidopsis. Natue Pl 3:17087.  https://doi.org/10.1038/nplants.2017.87 CrossRefGoogle Scholar
  9. Harmer SL (2009) The circadian system in higher plants. Annual Rev Pl Biol 60:357–377.  https://doi.org/10.1146/annurev.arplant.043008.092054 CrossRefGoogle Scholar
  10. Herrero E et al (2012) EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Pl Cell 24:428–443.  https://doi.org/10.1105/tpc.111.093807 CrossRefGoogle Scholar
  11. Holm K, Kallman T, Gyllenstrand N, Hedman H, Lagercrantz U (2010) Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop? BMC Pl Biol 10:109.  https://doi.org/10.1186/1471-2229-10-109 CrossRefGoogle Scholar
  12. Hsu PY, Harmer SL (2014) Wheels within wheels: the plant circadian system. Trends Pl Sci 19:240–249.  https://doi.org/10.1016/j.tplants.2013.11.007 CrossRefGoogle Scholar
  13. Huang H, Nusinow DA (2016) Into the evening: complex interactions in the Arabidopsis circadian clock. Trends Genet 32:674–686.  https://doi.org/10.1074/mcp.M115.054064 CrossRefGoogle Scholar
  14. Huang H et al (2016) Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry. Molec Cell Proteomics 15:201–217.  https://doi.org/10.1016/j.tig.2016.08.002 CrossRefGoogle Scholar
  15. Khanna R, Kikis EA, Quail PH (2003) EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation. Pl Physiol 133:1530–1538.  https://doi.org/10.1104/pp.103.030007 CrossRefGoogle Scholar
  16. Kim Y et al (2012) GIGANTEA and EARLY FLOWERING 4 in Arabidopsis exhibit differential phase-specific genetic influences over a diurnal cycle. Molec Pl 5:678–687.  https://doi.org/10.1016/j.celrep.2013.02.021 CrossRefGoogle Scholar
  17. Kim Y et al (2013) ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration. Cell Rep 3:671–677.  https://doi.org/10.1093/mp/sss005 CrossRefGoogle Scholar
  18. Kolmos E, Davis SJ (2007) ELF4 as a central gene in the circadian clock. Pl Signaling Behavior 2:370–372.  https://doi.org/10.4161/psb.2.5.4463 CrossRefGoogle Scholar
  19. Kolmos E et al (2009) Integrating ELF4 into the circadian system through combined structural and functional studies. HFSP J 3:350–366.  https://doi.org/10.2976/1.3218766 CrossRefGoogle Scholar
  20. Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Pl Sci 13:542–549.  https://doi.org/10.1016/j.tplants.2008.07.002 CrossRefGoogle Scholar
  21. Lee JH, Ji HA (2013) Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342:628–632.  https://doi.org/10.1126/science.1241097 CrossRefGoogle Scholar
  22. Li G et al (2011) Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13:616–622.  https://doi.org/10.1038/ncb2219 CrossRefGoogle Scholar
  23. Li J et al (2016) Evolution of DUF1313 family members across plant species and their association with maize photoperiod sensitivity. Genomics 107:199–207.  https://doi.org/10.1016/j.ygeno.2016.01.003 CrossRefGoogle Scholar
  24. Lin K, Zhao H, Gan S, Li G (2019) Arabidopsis ELF4-like proteins EFL1 and EFL3 influence flowering time. Gene 700:131–138.  https://doi.org/10.1016/j.gene.2019.03.047 CrossRefGoogle Scholar
  25. Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR (2001) ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Pl Cell 13:1293–1304.  https://doi.org/10.1105/tpc.13.6.1293 CrossRefGoogle Scholar
  26. Lu SX, Webb CJ, Knowles SM, Kim SH, Wang Z, Tobin EM (2012) CCA1 and ELF3 interact in the control of hypocotyl length and flowering time in Arabidopsis. Pl Physiol 158:1079–1088.  https://doi.org/10.1104/pp.111.189670 CrossRefGoogle Scholar
  27. Ma L, Tian T, Lin R, Deng XW, Wang H, Li G (2016) Arabidopsis FHY3 and FAR1 regulate light-induced myo-inositol biosynthesis and oxidative stress responses by transcriptional activation of MIPS1. Molec Pl 9:541–557.  https://doi.org/10.1016/j.molp.2015.12.013 CrossRefGoogle Scholar
  28. Marcolino-Gomes J et al (2017) Functional characterization of a putative glycine max ELF4 in transgenic Arabidopsis and its role during flowering control. Frontiers Pl Sci 8:618.  https://doi.org/10.3389/fpls.2017.00618 CrossRefGoogle Scholar
  29. Matsuo T, Ishiura M (2011) Chlamydomonas reinhardtii as a new model system for studying the molecular basis of the circadian clock. FEBS Lett 585:1495–1502.  https://doi.org/10.1016/j.febslet.2011.02.025 CrossRefGoogle Scholar
  30. Matsuo T, Okamoto K, Onai K, Niwa Y, Shimogawara K, Ishiura M (2008) A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Genes Developm 22:918–930.  https://doi.org/10.1101/gad.1650408 CrossRefGoogle Scholar
  31. Mcclung CR (2013) Beyond Arabidopsis: the circadian clock in non-model plant species. Seminars Cell Developmental Biol 24:430–436.  https://doi.org/10.1016/j.semcdb.2013.02.007 CrossRefGoogle Scholar
  32. McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature 408:716–720.  https://doi.org/10.1038/35047079 CrossRefGoogle Scholar
  33. McWatters HG et al (2007) ELF4 is required for oscillatory properties of the circadian clock. Pl Physiol 144:391–401.  https://doi.org/10.1104/pp.107.096206 CrossRefGoogle Scholar
  34. Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Pl Physiol 137:399–409.  https://doi.org/10.1104/pp.104.052415 CrossRefGoogle Scholar
  35. Nagel DH, Doherty CJ, Pruneda-Paz JL, Schmitz RJ, Ecker JR, Kay SA (2015) Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. Proc Natl Acad Sci USA 112:E4802–E4810.  https://doi.org/10.1073/pnas.1513609112 CrossRefGoogle Scholar
  36. Nusinow DA et al (2011) The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402.  https://doi.org/10.1038/nature10182 CrossRefGoogle Scholar
  37. Oakenfull RJ, Davis SJ (2017) Shining a light on the Arabidopsis circadian clock. Pl Cell Environm 40:2571–2585.  https://doi.org/10.1111/pce.13033 CrossRefGoogle Scholar
  38. Okada R, Kondo S, Satbhai SB, Yamaguchi N, Tsukuda M, Aoki S (2010) Functional characterization of CCA1/LHY homolog genes, PpCCA1a and PpCCA1b, in the moss Physcomitrella patens. Pl J 60:551–563.  https://doi.org/10.1111/j.1365-313X.2009.03979.x CrossRefGoogle Scholar
  39. Romera-Branchat M, Andrés F, Coupland G (2014) Flowering responses to seasonal cues: what’s new? Curr Opin Pl Biol 21:120–127.  https://doi.org/10.1016/j.pbi.2014.07.006 CrossRefGoogle Scholar
  40. Ryo M, Matsuo T, Yamashino T, Ichinose M, Sugita M, Aoki S (2016) Diversity of plant circadian clocks: Insights from studies of Chlamydomonas reinhardtii and Physcomitrella patens. Pl Signaling Behavior 11:e1116661.  https://doi.org/10.1080/15592324.2015.1116661 CrossRefGoogle Scholar
  41. Song YH (2016) The effect of fluctuations in photoperiod and ambient temperature on the timing of flowering: time to move on natural environmental conditions. Molec Cells 39:715–721.  https://doi.org/10.14348/molcells.2016.0237 CrossRefGoogle Scholar
  42. Song YH, Ito S, Imaizumi T (2010) Similarities in the circadian clock and photoperiodism in plants. Curr Opin Pl Biol 13:594–603.  https://doi.org/10.1016/j.pbi.2010.05.004 CrossRefGoogle Scholar
  43. Wagner V, Mittag M (2009) Probing circadian rhythms in Chlamydomonas reinhardtii by functional proteomics. Methods Molec Biol 479:173–188.  https://doi.org/10.1007/978-1-59745-289-2_11 CrossRefGoogle Scholar
  44. Zhang Y, Wang Y, Wei H, Li N, Tian W, Chong K, Wang L (2018) Circadian evening complex represses jasmonate-induced leaf senescence in Arabidopsis. Molec Pl 11:326–337.  https://doi.org/10.1016/j.molp.2017.12.017 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianChina
  2. 2.Department of Biology Science and TechnologyTaishan UniversityTaianChina

Personalised recommendations