Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 7, pp 549–562 | Cite as

Floral organogenesis and vasculature in Mayacaceae, an enigmatic family of Poales

  • Aline OrianiEmail author
  • Vera L. Scatena
Original Article
  • 128 Downloads

Abstract

Mayacaceae are a small and monogeneric aquatic family including 4–6 species and with an unstable phylogenetic position within Poales. Therefore, the floral development and vasculature were studied in Mayaca fluviatilis and Mayaca sellowiana to better understand interfamilial relationships. In both species, the floral vascular system is organized in six central complexes from which the traces of all floral parts diverge. Both sepals and petals receive three traces, but in the sepals the median and lateral traces do not originate from the same vascular complex, whereas in the petals the median and lateral traces originate from the same complex. Both, ventral and dorsal carpellary traces, vascularize the ovary wall, ascending to the stigma. The sepals are the first organs to be initiated and have a rapid growth. Such structures exhibit glandular trichomes on their margins and remain united, protecting the inner whorls. After sepal development, the petals and the stamens of the outer whorl are initiated, followed by the gynoecium, which appears as an annular primordium. The petals have a markedly delay in development. In M. fluviatilis, the anthers may dehisce before anthesis and self-pollination occurs in the bud. The reduction (loss) of the inner stamen whorl and gynoecium development from an annular primordium link Mayacaceae to the cyperids (Poales). A high similarity in respect to floral vasculature was observed between Mayacaceae and Commelinaceae (Commelinales).

Keywords

Cyperids Floral anatomy Gynoecium Mayaca Ontogeny Xyrids 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant numbers 168277/2014-0 and 301692/2010-6). We thank the NAP-MEPA, ESALQ-USP for the use of the scanning electron microscope and Renato Salaroli for his assistance. We also thank the two anonymous reviewers for their valuable comments that improved the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20.  https://doi.org/10.1111/boj.12385 CrossRefGoogle Scholar
  2. Blaser HW (1941a) Studies in the morphology of the Cyperaceae I. Morphology of the flowers. Scirpoid genera. Amer J Bot 28:542–551.  https://doi.org/10.1002/j.1537-2197.1941.tb10974.x CrossRefGoogle Scholar
  3. Blaser HW (1941b) Studies in the morphology of the Cyperaceae I. Morphology of flowers. Rhynchosporoid genera. Amer J Bot 28:832–838.  https://doi.org/10.1002/j.1537-2197.1941.tb11013.x CrossRefGoogle Scholar
  4. Bouchenak-Khelladi Y, Muasya AM, Linder HP (2014) A revised evolutionary history of Poales: origins and diversification. Bot J Linn Soc 175:4–16.  https://doi.org/10.1111/boj.12160 CrossRefGoogle Scholar
  5. Bremer K (2002) Gondwanan evolution of the grass alliance of families (Poales). Evolution 56:1374–1387.  https://doi.org/10.1111/j.0014-3820.2002.tb01451.x CrossRefGoogle Scholar
  6. Carvalho MLS, Machado AFP (2015) Revisiting Mayacaceae Kunth towards to future perspectives in the family. Rodriguésia 66:421–427.  https://doi.org/10.1590/2175-7860201566210 CrossRefGoogle Scholar
  7. Carvalho MLS, Nakamura AT, Sajo MG (2009) Floral anatomy of Neotropical species of Mayacaceae. Flora 204:220–227.  https://doi.org/10.1016/j.flora.2008.02.003 CrossRefGoogle Scholar
  8. Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF, Hahn WH, Sullivan S, Joseph J, Molvray M, Kores PJ, Givnish TJ, Sytsma KJ, Pires JC (2000) Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 3–16Google Scholar
  9. Chase MW, Fay MF, Devey DS, Maurin O, Ronsted N, Davies TJ, Pillon Y, Petersen G, Seberg O, Tamura MN, Asmussen CB, Hilu K, Borsch T, Davis JI, Stevenson DW, Pires JC, Givnish TJ, Sytsma KJ, McPherson MA, Graham SW, Rai HS (2006) Multigene analyses of monocot relationships: a summary. Aliso 22:63–75.  https://doi.org/10.5642/aliso.20062201.06 CrossRefGoogle Scholar
  10. Cheadle VI, Kosakai H (1980) Occurrence and specialization of vessels in Commelinales. Phytomorphology 30:98–117.  https://doi.org/10.1111/j.1756-1051.1982.tb01168.x Google Scholar
  11. Davis JI, Stevenson DW, Petersen G, Seberg O, Campbell LM, Freudenstein JV, Goldman DH, Hardy CR, Michelangeli FA, Simmons MP, Specht CD, Vergara-Silva F, Gandolfo M (2004) A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Syst Bot 29:467–510.  https://doi.org/10.1600/0363644041744365 CrossRefGoogle Scholar
  12. Eames AJ (1931) The vascular anatomy of the flower with refutation of the theory of carpel polymorphism. Amer J Bot 18:147–188.  https://doi.org/10.1002/j.1537-2197.1931.tb09580.x CrossRefGoogle Scholar
  13. Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, CambridgeGoogle Scholar
  14. Endress PK (2001) Origins of flower morphology. J Exp Zool 291:105–115.  https://doi.org/10.1002/jez.1063 CrossRefGoogle Scholar
  15. Endress PK (2005) Links between embryology and evolutionary floral morphology. Curr Sci 89:749–754Google Scholar
  16. Endress PK (2011) Angiosperm ovules: diversity, development, evolution. Ann Bot (Oxford) 107:1465–1489.  https://doi.org/10.1093/aob/mcr120 CrossRefGoogle Scholar
  17. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Amer J Bot 55:123–142.  https://doi.org/10.1002/j.1537-2197.1968.tb06952.x CrossRefGoogle Scholar
  18. Ferrari RC, Oriani A (2017) Floral anatomy and development of Saxofridericia aculeata (Rapateaceae) and its taxonomic and phylogenetic significance. Pl Syst Evol 303:187–201.  https://doi.org/10.1007/s00606-016-1361-z CrossRefGoogle Scholar
  19. Gerrits PO, Smid L (1983) A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections. J Microscopy 132:81–85.  https://doi.org/10.1111/j.1365-2818.1983.tb04711.x CrossRefGoogle Scholar
  20. Givnish TJ, Evans TM, Pires JC, Sytsma KJ (1999) Polyphyly and convergent morphological evolution in Commelinales and Commelinidae: evidence from rbcL sequence data. Molec Phylogen Evol 12:360–385.  https://doi.org/10.1006/mpev.1999.0601 CrossRefGoogle Scholar
  21. Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB, Rai HS, Roalson EH, Evans TM, Hahn WJ, Millam KC, Meerow AW, Molvray M, Kores PJ, O’Brien HE, Hall JC, Kress WJ, Sytsma KJ (2006) Phylogenetic relationships of monocots based on the highly informative plastid gene ndhF: evidence for widespread concerted convergence. Aliso 22:28–51.  https://doi.org/10.5642/aliso.20062201.04 CrossRefGoogle Scholar
  22. Givnish TJ, Ames M, McNeal JR, McKain MR, Steele PR, dePamphilis CW, Graham SW, Pires JC, Stevenson DW, Zomlefer WB, Briggs BG, Duvall MR, Moore MJ, Heaney JM, Soltis DE, Soltis PS, Thiele K, Leebens-Mack JH (2010) Assembling the tree of the monocotyledons: plastome sequence phylogeny and evolution of Poales. Ann Missouri Bot Gard 97:584–616.  https://doi.org/10.3417/2010023 CrossRefGoogle Scholar
  23. Givnish TJ, Zuluaga A, Spalink D, Gomez MS, Lam VKY, Saarela JM, Sass C, Iles WJD, Sousa DJL, Leebens-Mack J, Pires JC, Zomlefer WB, Gandolfo MA, Davis JI, Stevenson DW, dePamphilis C, Specht CD, Graham SW, Barrett CF, Ané C (2018) Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots. Amer J Bot 105:1888–1910.  https://doi.org/10.1002/ajb2.1178 CrossRefGoogle Scholar
  24. Hardy CR, Stevenson DW (2000a) Development of the gametophytes, flower, and floral vasculature in Cochliostema odoratissimum (Commelinaceae). Bot J Linn Soc 134:131–157.  https://doi.org/10.1111/j.1095-8339.2000.tb02348.x Google Scholar
  25. Hardy CR, Stevenson DW (2000b) Floral organogenesis in some species of Tradescantia and Callisia (Commelinaceae). Int J Pl Sci 161:551–562.  https://doi.org/10.1086/314279 CrossRefGoogle Scholar
  26. Hardy CR, Stevenson DW, Kiss HG (2000) Development of the gametophytes, flower, and floral vasculature in Dichorisandra thyrsiflora (Commelinaceae). Amer J Bot 87:1228–1239.  https://doi.org/10.2307/2656715 CrossRefGoogle Scholar
  27. Hiepko P (1965) Vergleichend-morphologische und entwicklungsgeschichtliche Untersuchungen über das Perianth bei den Polycarpicae. Bot Jahrb Syst 84:359–508Google Scholar
  28. Hutchinson J (1959) The families of flowering plants, Monocotyledons, vol. 2. Oxford, Clarendon PressGoogle Scholar
  29. Johansen DA (1940) Plant microtechnique. Mc Graw-Hill Book Co, New YorkGoogle Scholar
  30. Linder HP, Rudall PJ (2005) Evolutionary history of Poales. Annual Rev Ecol Evol Syst 36:107–124.  https://doi.org/10.1146/annurev.ecolsys.36.102403.135635 CrossRefGoogle Scholar
  31. Monteiro MM, Scatena VL, Oriani A (2017) Comparative floral anatomy of Rhynchospora consanguinea and Rhynchospora pubera (Cyperoideae, Cyperaceae). Pl Syst Evol 303:283–297.  https://doi.org/10.1007/s00606-016-1371-x CrossRefGoogle Scholar
  32. Novikoff AV, Kazemirska MA (2012) Vascular anatomy and morphology of the flower in Fritillaria Montana Hoppe (Liliaceae). Modern Phytomorphol 1:27–35Google Scholar
  33. O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373.  https://doi.org/10.1007/BF01248568 CrossRefGoogle Scholar
  34. Oriani A, Scatena VL (2012) Floral anatomy of xyrids (Poales): contributions to their reproductive biology, taxonomy and phylogeny. Int J Pl Sci 173:767–779.  https://doi.org/10.1086/666664 CrossRefGoogle Scholar
  35. Oriani A, Scatena VL (2017) Ovule, fruit, and seed development of Orectanthe sceptrum and its systematic relevance to Xyridaceae (Poales). Int J Pl Sci 178:104–116.  https://doi.org/10.1086/689617 CrossRefGoogle Scholar
  36. Oriani A, Stützel T, Scatena VL (2012) Contributions to the floral anatomy of Juncaceae (Poales-Monocotyledons). Flora 207:334–340.  https://doi.org/10.1016/j.flora.2012.03.001 CrossRefGoogle Scholar
  37. Puri V (1951) The role of floral anatomy in the solution of morphological problems. Bot Rev 17:471–553.  https://doi.org/10.1007/BF02882536 CrossRefGoogle Scholar
  38. Remizowa MV, Kuznetsov AN, Kuznetsova SP, Rudall PJ, Nuraliev MS, Sokoloff DD (2012) Flower development and vasculature in Xyris grandis (Xyridaceae, Poales): a case study for examining petal diversity in monocot flowers with a double perianth. Bot J Linn Soc 170:93–111.  https://doi.org/10.1111/j.1095-8339.2012.01267.x CrossRefGoogle Scholar
  39. Reynders M, Vrijdaghs A, Larridon I, Huygh W, Leroux O, Muasya AM, Goetghebeur P (2012) Gynoecial anatomy and development in Cyperoideae (Cyperaceae, Poales): congenital fusion of carpels facilitates evolutionary modifications in pistil structure. Pl Ecol Evol 145:96–125.  https://doi.org/10.5091/plecevo.2012.675 CrossRefGoogle Scholar
  40. Ronse De Craene LP, Linder HP, Smets EF (2002) Ontogeny and evolution of the flowers of South African Restionaceae with special emphasis on the gynoecium. Pl Syst Evol 231:225–258.  https://doi.org/10.1007/s006060200021 CrossRefGoogle Scholar
  41. Rosa MM, Scatena VL (2007) Floral anatomy of Paepalanthoideae (Eriocaulaceae, Poales) and their nectariferous structures. Ann Bot (Oxford) 99:131–139.  https://doi.org/10.1093/aob/mcl231 CrossRefGoogle Scholar
  42. Sajo MG, Rudall PJ, Prychid CJ (2004) Floral anatomy of Bromeliaceae, with particular reference to the evolution of epigyny and septal nectaries in commelinid monocots. Pl Syst Evol 247:215–231.  https://doi.org/10.1007/s00606-002-0143-0 CrossRefGoogle Scholar
  43. Sajo MG, Oriani A, Scatena VL, Rudall PJ (2017) Floral ontogeny and vasculature in Xyridaceae, with particular reference to staminodes and stylar appendages. Pl Syst Evol 303:1293–1310.  https://doi.org/10.1007/s00606-017-1438-3 CrossRefGoogle Scholar
  44. Singh V (1966) Morphological and anatomical studies in Helobiae. VI. Vascular anatomy of the flower of Alismataceae. Proc Natl Acad Sci India, B, Biol Sci 36:329–344Google Scholar
  45. Singh V, Sattler R (1972) Floral development of Alisma triviale. Canad J Bot 50:619–627.  https://doi.org/10.1139/b72-076 CrossRefGoogle Scholar
  46. Soltis DE, Soltis PS, Endress PK, Chase MW (2005) Phylogeny and evolution of angiosperms. Sinauer Associates Inc, SunderlandGoogle Scholar
  47. Stevenson DW (1983) Systematic implications of the floral morphology of the Mayacaceae. Amer J Bot 70(5, part 2):32Google Scholar
  48. Stevenson DW (1998) Mayacaceae. In: Kubitzki K (ed) The families and genera of vascular plants—IV monocotyledons. Springer Verlag, Berlin, pp 294–296Google Scholar
  49. Stevenson DW, Loconte H (1995) Cladistic analysis of monocot families. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 543–578Google Scholar
  50. Stevenson DW, Davis JI, Freudenstein JV, Hardy CR, Simmons MP, Specht CD (2000) A phylogenetic analysis of monocotyledons based on morphological and molecular character sets, with comments on the placement of Acorus and Hydatellaceae. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 17–24Google Scholar
  51. Tomlinson PB (1969) Commelinales-Zingiberales. In: Metcalfe CR (ed) Anatomy of monocotyledons. Clarendon Press, Oxford, pp 83–91Google Scholar
  52. Uphof JCT (1933) Die Blütenbiologie von Mayaca fluviatilis Aub. Ber Deutsch Bot Ges 51:78–85Google Scholar
  53. Utech FH (1978) Floral vascular anatomy of Medeola virginiana L. (Liliaceae − Parideae = Trilliaceae) and tribal note. Ann Carnegie Mus 47:13–28Google Scholar
  54. Utech FH (1979) Floral vascular anatomy of Scoliopus bigelovii Torrey (Liliaceae − Parideae = Trilliaceae) and tribal note. Ann Carnegie Mus 48:43–71Google Scholar
  55. Venturelli M, Bouman F (1986) Embryology and seed development in Mayaca fluviatilis (Mayacaceae). Acta Bot Neerl 35:497–516.  https://doi.org/10.1111/j.1438-8677.1986.tb00489.x CrossRefGoogle Scholar
  56. Vrijdaghs AC, Caris P, Goetghebeur P, Smets E (2005) Floral ontogeny in Scirpus, Eriophorum and Dulichium (Cyperaceae), with special reference to the perianth. Ann Bot (Oxford) 95:1199–1209.  https://doi.org/10.1093/aob/mci132 CrossRefGoogle Scholar
  57. Vrijdaghs A, Goetghebeur P, Smets E, Muasya AM (2006) The floral scales in Hellmunthia (Cyperaceae, Cyperoideae) and Paramapania (Cyperaceae, Mapanioideae): an ontogenetic study. Ann Bot (Oxford) 98:619–630.  https://doi.org/10.1093/aob/mcl138 CrossRefGoogle Scholar
  58. Vrijdaghs A, Muasya AM, Goetghebeur P, Caris P, Nagels A, Smets E (2009) A floral ontogenetic approach to homology questions within the Cyperoideae (Cyperaceae). Bot Rev 75:30–51.  https://doi.org/10.1007/s12229-008-9021-9 CrossRefGoogle Scholar
  59. Zavada MS (1983) Comparative morphology of monocot pollen and evolutionary trends of apertures and wall structures. Bot Rev 49:331–379.  https://doi.org/10.1007/BF02861086 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ciências Biológicas (Biologia Vegetal), Departamento de Botânica, Instituto de BiociênciasUNESP - Universidade Estadual PaulistaRio ClaroBrazil

Personalised recommendations