Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 7, pp 487–502 | Cite as

Multi-locus phylogenetic reconstructions reveal ample reticulate relationships among genera in Anthemideae subtribe Handeliinae (Compositae)

  • Christoph OberprielerEmail author
  • Hajar Hassanpour
  • Ali Sonboli
  • Tankred Ott
  • Florian Wagner
Original Article
  • 65 Downloads

Abstract

In order to clarify the phylogenetic relationships among the genera of Compositae-Anthemideae subtribe Handeliinae, we analysed sequence variation on both the plastidic (cpDNA trnL-rpl32 intergenic spacer region) and the nuclear genome (nrDNA ITS + 5.8S + ETS and three single-copy markers) for representatives of all genera assigned to this subtribe in preceding morphology- and molecular-based analyses. Incongruence among the individual gene trees reconstructed is interpreted as being due to extensive hybridisation between the evolutionary lineages because a coalescent-based species-tree reconstruction, that takes gene-tree incongruence due to incomplete lineage sorting into account, leads to a very limited number of monophyletic groups with statistically significant support values. Nevertheless, our present analyses demonstrate (a) the close relationship of subtribes Handeliinae and Artemisiinae, (b) the lack of phylogenetic independence of subtribes Handeliinae and Cancriniinae, (c) the inclusion of the genus Microcephala in the Handeliinae (as sister to Cancrinia), (d) the close relationship of Lepidolopsis and Tanacetopsis, and (e) the subdivision of Allardia into two lineages, with A. subg. Allardia being related to Trichanthemis and Ugamia (all of them with hairy achenes) and A. subg. Waldheimia to the genus Richteria (glabrous pericarp).

Keywords

Asteraceae Gene trees Next-generation sequencing Species tree Subtribes Taxonomy 

Notes

Acknowledgements

We would like to express our sincerest thanks to Nicole Schmelzer, the technician in the molecular laboratory of the Evolutionary and Systematic Botany Group at Regensburg University. The curators of herbaria B, FUMH, M/MSB, S, and W are thanked for allowing us to extract DNA from herbarium specimens housed in their collections. Comments of two anonymous reviewers are thankfully acknowledged and have considerably improved the present contribution.

Funding

This work was financially supported by the research council of the University of Tarbiat Modares through a PhD student fellowship grant to HH.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.

Supplementary material

606_2019_1588_MOESM1_ESM.pdf (271 kb)
Supplementary material 1 (PDF 270 kb)
606_2019_1588_MOESM2_ESM.fas (35 kb)
Supplementary material 2 (FAS 36 kb)
606_2019_1588_MOESM3_ESM.fas (37 kb)
Supplementary material 3 (FAS 37 kb)
606_2019_1588_MOESM4_ESM.fas (20 kb)
Supplementary material 4 (FAS 21 kb)
606_2019_1588_MOESM5_ESM.fas (20 kb)
Supplementary material 5 (FAS 21 kb)
606_2019_1588_MOESM6_ESM.fas (16 kb)
Supplementary material 6 (FAS 17 kb)

References

  1. Blanco-Pastor JL, Vargas P, Pfeil BE (2012) Coalescent simulations reveal hybridization and incomplete lineage sorting in Mediterranean Linaria. PLoS One 7:e39089CrossRefGoogle Scholar
  2. Bremer K, Humphries CJ (1993) Generic monograph of the Asteraceae-Anthemideae. Bull Natl Hist Mus Lond 23:71–177Google Scholar
  3. Bremer K, Eklund H, Medhanie G, Heidmarsson S, Laurent N, Maad J, Niklasson J, Nordin A (1996) On the delimitation of Matricaria versus Microcephala (Asteraceae: Anthemideae). Pl Syst Evol 200:263–271CrossRefGoogle Scholar
  4. Chapman MA, Chang J, Weisman D, Kesseli RV, Burke JM (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (compositae). Theor Appl Genet 115:747–755.  https://doi.org/10.1007/s00122-007-0605-2 CrossRefGoogle Scholar
  5. Coparaso JG, Kuczynsky J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Gonzalez Peña A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nature Meth 7:335–336CrossRefGoogle Scholar
  6. Degnan JH, Rosenberg NA (2006) Discordance of species trees with their most likely gene trees. PLoS Genet 2:68CrossRefGoogle Scholar
  7. Douzery EJP, Pridgeon AM, Kores P, Linder HP, Kurzweil H, Chase MW (1999) Molecular phylogenetics of Diseae (orchidaceae): a contribution from nuclear ribosomal ITS sequences. Amer J Bot 86:887–899CrossRefGoogle Scholar
  8. Downie SS, Katz-Downie DS (1996) A molecular phylogeny of Apiaceae subfamily Apoideae: evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Amer J Bot 83:234–251CrossRefGoogle Scholar
  9. Doyle JJ, Dickson EE (1987) Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36:715–722CrossRefGoogle Scholar
  10. Doyle JJ, Doyle JS (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  11. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefGoogle Scholar
  12. Dupont-Nivet G, Krijgsman W, Langereis CG, Abels HA, Dai S, Fang XM (2007) Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature 445:635–638CrossRefGoogle Scholar
  13. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefGoogle Scholar
  14. Hassanpour H, Zare-Maivan H, Sonboli A, Kazempour-Osaloo S, Wagner F, Tomasello S, Oberprieler C (2018) Phylogenetic species delimitation unravels a new species in the genus Sclerorhachis (Rech.f.) Rech.f. (Compositae, Anthemideae). Pl Syst Evol 304:185–203CrossRefGoogle Scholar
  15. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefGoogle Scholar
  16. Joly S (2012) JML: testing hybridization from species trees. Molec Ecol Resources 12:179–184CrossRefGoogle Scholar
  17. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molec Biol Evol 30:772–780CrossRefGoogle Scholar
  18. Konowalik K, Wagner F, Tomasello S, Vogt R, Oberprieler C (2015) Detecting reticulate relationships among diploid Leucanthemum Mill. (Compositae, Anthemideae) taxa using multilocus species tree reconstruction methods and AFLP fingerprinting. Molec Phylogenet Evol 92:308–328CrossRefGoogle Scholar
  19. Lee J, Baldwin BG, Gottlieb L (2002) Phylogeny of Stephanomeria and related genera (Compositae-Lactuceae) based on analysis of 18S–26S nuclear rDNA ITS and ETS sequences. Amer J Bot 89:160–168.  https://doi.org/10.3732/ajb.89.1.160 CrossRefGoogle Scholar
  20. Linder CR, Goertzen LR, Heuvel BV, Francisco-Ortega J, Jansen RK (2000) The complete external transcribed spacer of 18S-26S rDNA: amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families. Molec Phaylogenet Evol 14:285–303.  https://doi.org/10.1006/mpev.1999.0706 CrossRefGoogle Scholar
  21. Liu JQ, Wang YJ, Wang AL, Ohba H, Abbott RJ (2006) Radiation and diversification within the Ligularia-Cremanthodium-Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Molec Phylogen Evol 38:31–49.  https://doi.org/10.1016/j.ympev.2005.09.010 CrossRefGoogle Scholar
  22. Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536CrossRefGoogle Scholar
  23. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE). New Orleans, pp 1–8Google Scholar
  24. Milne RI, Davies C, Prickett R, Inns LH, Chamberlain DF (2010) Phylogeny of Rhododendron subgenus Hymenanthes based on chloroplast DNA markers: between-lineage hybridisation during adaptive radiation? Pl Syst Evol 285:233–244.  https://doi.org/10.1007/s00606-010-0269-2 CrossRefGoogle Scholar
  25. Nylander JAA (2004) MrModeltest 2.3. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  26. Oberprieler C (2004) On the taxonomic status and the phylogenetic relationships of some unispecific Mediterranean genera of Compositae-Anthemideae I. Brocchia Vis., Endopappus Sch. Bip., and Heliocauta Humphries. Willdenowia 34:39–57CrossRefGoogle Scholar
  27. Oberprieler C, Vogt R (2016) On the taxonomic position of Tancetum funkii (Anthemideae, Compositae). Anales Jard Bot Madrid 73:e0462016.  https://doi.org/10.3989/ajbm.2427 Google Scholar
  28. Oberprieler C, Vogt R, Watson LE (2006) XVI. Tribe anthemideae cass. In: Kadereit JW, Jeffrey C (eds.) The families and genera of vascular plants, Vol. VIII: Flowering Plants, Eudicots, Asterales, pp. 342–374Google Scholar
  29. Oberprieler C, Himmelreich S, Vogt R (2007) A new subtribal classification oft he tribe Anthejmideae (Compositae). Willdenowia 37:89–114CrossRefGoogle Scholar
  30. Oberprieler C, Himmelreich S, Källersjö M, Vallès J, Watson LE, Vogt R (2009) Tribe anthemideae cass. In: Funk VA et al (eds) Systematics, evolution, and biogeography of the compositae. IAPT, Washington, pp 631–666Google Scholar
  31. Pobedimova EG (1961) Genus 1526. Microcephala Pobed. In: Shiskin BK, Bobrov EG (eds) Flora USSR, vol. 26. Koeltz Science Books, Oberreifenberg, pp 176–181Google Scholar
  32. Podlech D (1976) Revision der Gattung Microcephala Pobed. (Asteraceae). Mitteilungen der Botanischen Staatssammlung München 12:655–681Google Scholar
  33. Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer
  34. Rannala B, Yang Z (2003) Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164:1645–1656Google Scholar
  35. Reeder J, Knight R (2010) Rapid denoising of pyrosequencing amplicon data: exploiting the rank-abundance distribution. Nature Meth 7:668–669CrossRefGoogle Scholar
  36. Renner SS (2016) Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages. J Biogeogr 43:1479–1487CrossRefGoogle Scholar
  37. Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92:6813–6817CrossRefGoogle Scholar
  38. Sanz M, Schneeweiss GM, Vilatersana R, Vallès J (2011) Temporal origins and diversification of Artemisia and allies (Anthemideae, Asteraceae). Collect Bot 30:7–15CrossRefGoogle Scholar
  39. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot 94:275–288.  https://doi.org/10.3732/ajb.94.3.275 CrossRefGoogle Scholar
  40. Som A (2015) Causes, consequences and solutions of phylogenetic incongruence. Brief Bioinform 16:536–548CrossRefGoogle Scholar
  41. Sonboli A, Oberprieler C (2010) Phylogenetic relationship and taxonomic position of Xylanthemum tianschanicum (Krasch.) Muradyan (Compositae, Anthemideae) as inferred from nrDNA ITS data. Biochem Syst Ecol 38:702–707CrossRefGoogle Scholar
  42. Sonboli A, Oberprieler C (2012) Insights into the phylogenetic and taxonomic position of Tanacetum semenovii Herder (Compositae, Anthemideae) based on nrDNA ITS sequence data. Biochem Syst Ecol 45:166–170CrossRefGoogle Scholar
  43. Sonboli A, Kazempour Osaloo S, Oberprieler C (2012a) Systematic status and phylogenetic relationships of the enigmatic Tanacetum paradoxum Bornm. (Asteraceae, Anthemideae): evidences from nrDNA ITS, micromorphological, and cytological data. Pl Syst Evol 292:85–93CrossRefGoogle Scholar
  44. Sonboli A, Stroka K, Kazempour Osaloo S, Oberprieler C (2012b) Molecular phylogeny and taxonomy of Tanacetum L. (Compositae, Anthemideae) inferred from nrDNA ITS and cpDNA trnH-psbA sequence variation. Pl Syst Evol 298:431–444CrossRefGoogle Scholar
  45. Suchard MA, Rambaut A (2009) Many-core algorithms for statistical phylogenetics. Bioinformatics 25:1370–1376CrossRefGoogle Scholar
  46. Tzvelev NN (1961a) Genus 1530. Waldheimia Kar. et Kir. In: Shiskin BK, Bobrov EG (eds) Flora USSR, vol. 26. Koeltz Science Books, Oberreifenberg, pp 305–313Google Scholar
  47. Tzvelev NN (1961b) Genus 1536. Cancrinia Kar. et Kir. In: Shiskin BK, Bobrov EG (eds) Flora USSR, vol. 26. Koeltz Science Books, Oberreifenberg, pp 339–365Google Scholar
  48. Wan SM, Li AC, Peter D, Clift J, Stuut W (2007) Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr Palaeoclim Palaeoecol 152:37–47Google Scholar
  49. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  50. Zhao HB, Chen FD, Chen SM, Wu GS, Guo WM (2010) Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Pl Syst Evol 284:153–169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Evolutionary and Systematic Botany GroupInstitute of Plant Sciences, University of RegensburgRegensburgGermany
  2. 2.Department of Plant Biology, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations