Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 4, pp 305–317 | Cite as

The transition to selfing in Azorean Tolpis (Asteraceae)

  • Daniel J. Crawford
  • Mónica Moura
  • Lurdes Borges Silva
  • Mark E. MortEmail author
  • Benjamin Kerbs
  • Hanno Schaefer
  • John K. Kelly
Original Article
  • 93 Downloads

Abstract

Asteraceae have the most endemic species of any flowering plant family in oceanic archipelagos, and these insular endemics display a higher frequency of self-compatibility (SC) compared to mainland composites. However, little attention has focused on the evolution of selfing in situ in islands. The genus Tolpis (Asteraceae) in the Macaronesian archipelagos consists predominantly of self-incompatible (SI) or pseudo-self-compatible plants, with one documented occurrence of the origin of self-compatibility (SC) in the Canary Islands. This study reports SC in two small populations of T. succulenta on Graciosa Island in the Azores. Progeny from the two populations exhibit high self-seed set. Segregation in F2 hybrids between SC and SI T. succulenta indicates that one major factor is associated with breeding system, with SC recessive to SI. Molecular phylogenetic analyses show that SC T. succulenta is sister to SI T. succulenta in the Azores, suggesting that SC originated from SI T. succulenta in the Azores. Plants on Graciosa are morphologically distinct from SI populations of T. succulenta on other islands in the Azorean archipelago, with smaller capitula and lower pollen-ovule ratios, both indicative of the selfing syndrome. The factors that may have favored selfing in these populations are discussed, as are the conservation implications of SC. Finally, the issue of whether the two SC populations are cryptic species worthy of taxonomic recognition is discussed.

Keywords

Asteraceae Azores Breeding system evolution Self-compatibility Tolpis 

Notes

Acknowledgements

This work was supported by a General Research Fund grant from KU EEB to MEM. The authors wish to thank the director and staff of Parque Natural da Graciosa for their assistance in providing seeds of the Graciosa populations as well as population census and population origin information; Katie Sadler and Joshua Montgomery for assistance with plant propagation and for assessing levels of pollen fertility and seed set; Gil Ortiz for preparing the images; Griffin White for assistance with DNA extraction; Tina Kiedaisch for assistance with field work. Special appreciation goes to Michael Gruenstaeudl for supplying seeds of Arnoseris minima and for providing constructive comments that greatly improved the manuscript.

References

  1. Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, Stern DL (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21:610–617CrossRefGoogle Scholar
  2. Baker HG (1955) Self compatibility and establishment after ‘long distance’ dispersal. Evolution 9:347–349Google Scholar
  3. Baker HG (1967) Support for Baker’s Law—as a rule. Evolution 21:853–856CrossRefGoogle Scholar
  4. Barrett SCH (2013) The evolution of plant reproductive systems: how often are transitions irreversible? Proc Roy Soc B Biol Sci 280:20130913.  https://doi.org/10.1098/rspb.2013.0913 CrossRefGoogle Scholar
  5. Barrett SCH, Harder LD (2017) The ecology of mating and its evolutionary consequences in seed plants. Annual Rev Ecol Evol Syst 48:135–157.  https://doi.org/10.1146/annurev-ecolsys-110316-023021 CrossRefGoogle Scholar
  6. Bateman RM, Rudall PJ, Moura M (2013) Systematic revision of Platanthera in the Azorean archipelago: not one but three species, including arguably Europe’s rarest orchid. PeerJ 1:e218.  https://doi.org/10.7717/peerj.218 CrossRefGoogle Scholar
  7. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winkler K, Ingram KK, Das I (2006) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155CrossRefGoogle Scholar
  8. Borges Silva L, Sardos J, Menezes de Sequeira M, Silva L, Crawford D, Moura M (2015) Understanding intra and inter-archipelago population genetic patterns within a recently evolved insular endemic lineage. Pl Syst Evol 302:367–384CrossRefGoogle Scholar
  9. Bramwell D, Bramwell Z (2001) Wild flowers of the Canary Islands, 2nd edn. Editorial Ruida, MadridGoogle Scholar
  10. Brennan AC, Harris AS, Hiscock SJ (2003) The population genetics of sporophytic self-incompatibility in Senecio squalidus L. (Asteraceae): avoidance of mating system constraints imposed by low S-allele number. Phil Trans Royal Soc B 358:1047–1050CrossRefGoogle Scholar
  11. Brennan AC, Tabah DA, Harris AS, Hiscock SJ (2011) Sporophytic self-incompatibility in Senecio squalidus (Asteraceae): S allele dominance interactions and modifiers of cross-compatibility and selfing rates. Heredity 106:113–123CrossRefGoogle Scholar
  12. Bried J, Magalhães MC, Bolton M, Neves VC, Bell E, Pereira JC, Aguiar L, Monteiro LR, Santos RS (2009) Seabird habitat restoration on Praia Islet, Azores archipelago. Ecol Restoration 27:27–36CrossRefGoogle Scholar
  13. Brys R, Vanden Broeck A, Mergeay J, Jacquemyn H (2013) The contribution of mating system variation to reproductive isolation in two closely related Centaurium species (Gentianaceae) with a generalized flower morphology. Evolution 68:1281–1293.  https://doi.org/10.1111/evo.12345 CrossRefGoogle Scholar
  14. Busch JW, Delph LF (2012) Importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Ann Bot (Oxford) 109:553–562.  https://doi.org/10.1093/aob/mcr219 CrossRefGoogle Scholar
  15. Carine MA, Schaefer H (2010) The Azores diversity enigma: why are there so few Azorean endemic flowering plants and why are they so widespread? J Biogeogr 37:77–89.  https://doi.org/10.1111/j.1365-2699.2009.02181.x CrossRefGoogle Scholar
  16. Carlquist S (1966) The biota of long-distance dispersal. IV. Genetic systems in the floras of oceanic islands. Evolution 20:433–455CrossRefGoogle Scholar
  17. Carlquist S (1974) Island biology. Columbia University Press, New YorkCrossRefGoogle Scholar
  18. Carr GD, Powell EA, Kyhos DW (1986) Self-incompatibility in the Hawaiian Madiinae (Compositae): an exception to Baker’s rule. Evolution 40:430–434CrossRefGoogle Scholar
  19. Carracedo JC (2011) Geología de Canarias. Origen, evolución, edad y volcanismo. Editorial Rueda E.L, MadridGoogle Scholar
  20. Chamorro S, Heleno R, Olesen JM, McMullen CK, Taveset A (2012) Pollination patterns and plant breeding systems in the Galápagos: a review. Ann Bot (Oxford) 110:1489–1501.  https://doi.org/10.1093/aob/mcs132 CrossRefGoogle Scholar
  21. Charlesworth D, Pannell JR (2001) Mating systems and population genetic structure in the light of coalescent theory. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell, Oxford, pp 73–95Google Scholar
  22. Cheptou PO (2012) Clarifying Baker’s Law. Ann Bot (Oxford) 109:633–641.  https://doi.org/10.1093/aob/mcr127 CrossRefGoogle Scholar
  23. Crawford DJ, Stuessy TF (2016) Cryptic variation, molecular data, and the challenges of conserving plant diversity in oceanic archipelagos: the critical role for plant systematics. Korean J Pl Tax 46:129–148.  https://doi.org/10.11110/kjpt.2016.46.2.129 CrossRefGoogle Scholar
  24. Crawford DJ, Archibald JK, Stoermer D, Mort ME, Kelly JK, Santos-Guerra A (2008) A test of Baker’s law: breeding systems and the radiation of Tolpis (Asteraceae) in the Canary Islands. Int J Pl Sci 169:782–791.  https://doi.org/10.1086/533604 CrossRefGoogle Scholar
  25. Crawford DJ, Lowrey TK, Anderson GJ, Bernardello G, Santos-Guerra A, Stuessy TF (2009) Genetic diversity in the colonizing ancestors of Asteraceae endemic to oceanic islands: Baker’s Law and polyploidy. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution, and biogeography of the Compositae. International Association of Plant Taxonomy, Vienna, pp 139–151Google Scholar
  26. Crawford DJ, Anderson GJ, Borges Silva L, de Sequeira MM, Moura M, Santos-Guerra A, Kelly JK, Mort ME (2015) Breeding systems in Tolpis (Asteraceae) in the Macaronesian islands: the Azores, Madeira and the Canaries. Pl Syst Evol 301:1981–1993.  https://doi.org/10.1007/s00606-015-1210-5 CrossRefGoogle Scholar
  27. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  28. Eaton DAR (2014) PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30:1844–1849.  https://doi.org/10.1093/bioinformatics/btu121 CrossRefGoogle Scholar
  29. Fisher RA (1941) Average excess and average effect of a gene substitution. Ann Eugen 11:53–63CrossRefGoogle Scholar
  30. Goodwillie C (2001) Pollen limitation and the evolution of self-incompatibility in Linanthus (Polemoniaceae). Int J Pl Sci 162:1283–1292CrossRefGoogle Scholar
  31. Grossenbacher D, Brandvain Y, Auld JR, Burd M, Cheptou PO, Conner JK, Grant AG, Hovick SM, Pannell JR, Pauw A, Petanidou T, Randle AM, de Casas RR, Vamosi J, Winn A, Igic B, Busch JW, Kalisz S, Goldberg EE (2017) Self-compatibility is over-represented on islands. New Phytol 215:469–478.  https://doi.org/10.1111/nph.14534 CrossRefGoogle Scholar
  32. Gruenstaeudl M, Santos-Guerra A, Jansen RK (2012) Phylogenetic analyses of Tolpis Adans. (Asteraceae) reveal patterns of adaptive radiation, multiple colonization and interspecific hybridization. Cladistics 29:416–434.  https://doi.org/10.1111/cla.12005 CrossRefGoogle Scholar
  33. Hu X-S (2015) Mating system as a barrier to gene flow. Evolution 69:1158–1177.  https://doi.org/10.1111/evo.12660 CrossRefGoogle Scholar
  34. Igic B, Lande R, Kohn JR (2008) Loss of self-incompatibility and its evolutionary consequences. Int J Pl Sci 169:93–104CrossRefGoogle Scholar
  35. Jaén-Molina R, Marrero-Rodríguez A, Reyes-Betancort JA, Santos-Guerra A, Naranjo-Suárez A, Caujapé-Castells J (2015) Molecular taxonomic identification in the absence of a ‘barcoding gap’: a test with the endemic flora of the Canarian oceanic hotspot. Molec Ecol Resources 15:42–56.  https://doi.org/10.1111/1755-0998.12292 CrossRefGoogle Scholar
  36. Jarvis CE (1980) Systematic studies in the genus Tolpis Adanson. PhD Thesis, University of Reading, ReadingGoogle Scholar
  37. Jones KE, Reyes-Betancort JA, Hiscock SJ, Carine MA (2014) Allopatric diversification, multiple habitat shifts, and hybridization in the evolution of Pericallis (Asteraceae), a Macaronesian endemic genus. Amer J Bot 101:637–651CrossRefGoogle Scholar
  38. Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, NiwotGoogle Scholar
  39. Koseva B, Crawford DJ, Brown K, Mort ME, Kelly JK (2017) The genetic breakdown of self-incompatibility in Tolpis coronopifolia (Asteraceae). New Phytol 216:1256–1267.  https://doi.org/10.1111/nph.14759 CrossRefGoogle Scholar
  40. Layman NC, Fernando MTR, Herlihy CR, Busch JW (2017) Costs of selfing prevent the spread of a self-compatibility mutation that causes reproductive assurance. Evolution 71:884–897.  https://doi.org/10.1111/evo.13167 CrossRefGoogle Scholar
  41. Levin DA (1996) The evolutionary significance of pseudo-self-fertility. Amer Naturalist 148:321–332CrossRefGoogle Scholar
  42. Maddison WP, Maddison DR (2018) Mesquite: a modular system for evolutionary analysis. Version 3.51. Available at: http://www.mesquiteproject.org/. Accessed 15 Oct 2018
  43. McMullen CK (1999) Flowering plants of the Galápagos. Cornell University Press, IthacaGoogle Scholar
  44. McMullen CK, Naranjo SJ (1994) Pollination of Scalesia baurii ssp. Hopkinsii (Asteraceae) on Pinta Island. Noticias Galápagos 53:25–28Google Scholar
  45. Moore M, Francisco-Ortega J, Santos-Guerra A, Jansen R (2002) Chloroplast DNA evidence for the roles of island colonization and extinction in Tolpis (Asteraceae: Lactuceae). Amer J Bot 89:518–526CrossRefGoogle Scholar
  46. Mort ME, Crawford DJ, Kelly JK, Santos-Guerra A, Menezes de Sequeira M, Moura M, Caujape-Castells J (2015) Mulitplexed-shotgun-genotyping data resolve phylogeny within a very recently derived insular lineage. Amer J Bot 102:634–641.  https://doi.org/10.3732/ajb.1400551 CrossRefGoogle Scholar
  47. Moura M, Silva L, Dias EF, Schaefer H, Carine M (2015) A revision of the genus Leontodon (Asteraceae) in the Azores based on morphological and molecular evidence. Phytotaxa 210:24–46.  https://doi.org/10.11646/phytotaxa.210.1.4 CrossRefGoogle Scholar
  48. Nielsen LR, Philipp M, Adsersen H, Siegismund HR (2000) Breeding system of Scalesia divisa Andersson, an endemic Asteraceae from the Galápagos Islands. Norske Vidensk-Akad Mat-Naturvidensk Kl, Shrifter, Ny Ser 39:127–138Google Scholar
  49. Nielsen L, Siegismund HS, Philipp M (2003) Partial self-incompatibility in the polyploid endemic species Scalesia affinis (Asteraceae) from the Galápagos: remnants of a self-incompatibility system? Bot J Linn Soc 142:93–101CrossRefGoogle Scholar
  50. Ornduff R (1969) Reproductive biology in relation to systematics. Taxon 18:121–133CrossRefGoogle Scholar
  51. Pannell JR (2015) Evolution of the mating system in colonizing plants. Molec Ecol 24:2018–2037.  https://doi.org/10.1111/mec.13087 CrossRefGoogle Scholar
  52. Pannell JR, Voillemot M (2017) Evolution and ecology of plant mating systems. In: eLS. Wiley. Chichester.  https://doi.org/10.1002/9780470015902.a0021909.pub2
  53. Pannell J, Auld JR, Brandvain Y, Burd M, Busch JW, Cheptou PO, Conner JK, Goldberg EE, Grant A, Grossenbacher DL, Hovick SM, Igic B, Kalisz S, Petanidou T, Randle AM, de Casas RR, Pauw A, Vamosi JC, Winn AA (2015) The scope of Baker’s law. New Phytol 208:656–667.  https://doi.org/10.1111/nph.13539 CrossRefGoogle Scholar
  54. Rambaut A (2007) FigTree version 1.4.2: a graphical viewer of phylogenetic trees. Available at: http://tree.bio.ed.ac.uk/software/figtree/. Accessed 31 Oct 2018
  55. Reinartz JA, Les DH (1994) Bottleneck-induced dissolution of self-incompatibility and breeding system consequences in Aster furcatus (Asteraceae). Amer J Bot 83:446–455CrossRefGoogle Scholar
  56. Schaefer H (2005) Flora of the Azores-a field guide, 2nd edn. Margraf Publishers, WeikersheimGoogle Scholar
  57. Schaefer H (2015) On the origin and systematic position of the Azorean goldenrod, Solidago azorica (Asteraceae). Phytotaxa 210:47–59.  https://doi.org/10.11646/phytotaxa.210.1.5 CrossRefGoogle Scholar
  58. Schaefer H, Moura M, Graciete M, Maciel B, Silva L, Rumsey FJ, Carine MA (2011) The Linnean shortfall in oceanic island biogeography: a case study in the Azores. J Biogeogr 38:1345–1355.  https://doi.org/10.1111/j.1365-2699.2011.02494.x CrossRefGoogle Scholar
  59. Sibrant ALR, Marques FO, Hildenbrand A (2014) Construction and destruction of a volcanic island developed inside an oceanic rift: Graciosa Island, Terceira Rift, Azores. J Volcanol Geotherm Res 284:32–45.  https://doi.org/10.1016/j.jvolgeores.2014.07.014 CrossRefGoogle Scholar
  60. Silva L, Martins MC, Maciel MGB, Moura M (eds) (2009) Flora vascular dos Açores: prioridades em conservação. Azorean vascular flora: priorities in conservation. Amigos dos Açores and CCPA, Ponta DelgadaGoogle Scholar
  61. Silva L, Moura M, Schaefer H, Rumsey F, Dias EF (2010) Lista das plantas vasculares (Tracheobionta). List of vascular plants (Tracheobionta). In: Borges PAV, Costa A, Cunha R, Gabriel R, Gonçalves V, Martins AFM, Melo I, Parente M, Raposeiro P, Rodrigues P, Santos RS, Silva L, Vieira P, Vieira V (eds) A list of the terrestrial and marine biota from the Azores. Princípia, Cascais, pp 117–146Google Scholar
  62. Silva L, Dias EF, Sardos J, Azevedo EB, Schaefer H, Moura M (2015) Towards a more holistic research approach to plant conservation: the case of rare plants on oceanic islands. AoB PLANTS 7:plv066.  https://doi.org/10.1093/aobpla/plv066 CrossRefGoogle Scholar
  63. Silva JL, Brennan AC, Mejıas JA (2016) Population genetics of self-incompatibility in a clade of relict cliff-dwelling plant species. AoB PLANTS 8:plw029.  https://doi.org/10.1093/aobpla/plw029 CrossRefGoogle Scholar
  64. Slotte T, Hazzouri KM, Stern D, Andolfatto P, Wright SI (2012) Genetic architecture and adaptive significance of the selfing syndrome in Capsella. Evolution 66:1360–1374.  https://doi.org/10.1111/j.1558-5646.2011.01540.x CrossRefGoogle Scholar
  65. Soto-Trejo F, Kelly JK, Archibald JK, Mort ME, Santos-Guerra A, Crawford DJ (2013) The genetics of self-compatibility and associated floral characters in Tolpis (Asteraceae) in the Canary Islands. Int J Pl Sci 174:171–178.  https://doi.org/10.1086/668788 CrossRefGoogle Scholar
  66. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.  https://doi.org/10.1093/bioinformatics/btu033 CrossRefGoogle Scholar
  67. Stebbins GL (1957) Self fertilization and population variability in the higher plants. Amer Naturalist 91:337–354CrossRefGoogle Scholar
  68. Struck TH, Feder JL, Bendiksby M, Birkeland S, Cerca J, Gusarov VI, Kistenich S, Larsson K-H, Liow LH, Nowak MD, Stedje B, Bachmann L, Dimitrov D (2018) Finding evolutionary processes hidden in cryptic species. Trends Ecol Evol 33:153–163.  https://doi.org/10.1016/j.tree.2017.11.007 CrossRefGoogle Scholar
  69. Wagner WL, Herbst DR, Sohmer SH (1990) Manual of the flowering plants of Hawaii. University of Hawaii Press and Bishop Museum Press, HonoluluGoogle Scholar
  70. Weissmann JA, Picanço A, Borges PAV, Schaefer H (2017) Bees of the Azores: an annotated checklist (Apidae, Hymenoptera). ZooKeys 642:63–95.  https://doi.org/10.3897/zookeys.642.10773 CrossRefGoogle Scholar
  71. Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants. Phil Trans Royal Soc B 280:20130133.  https://doi.org/10.1098/rspb.2013.0133 Google Scholar
  72. Young AG, Pickup M (2010) Low S-allele numbers limit mate availability, reduce seed set and skew fitness in small populations of a self-incompatible plant. J Appl Ecol 47:541–548CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Daniel J. Crawford
    • 1
  • Mónica Moura
    • 2
  • Lurdes Borges Silva
    • 2
  • Mark E. Mort
    • 3
    Email author
  • Benjamin Kerbs
    • 3
  • Hanno Schaefer
    • 4
  • John K. Kelly
    • 3
  1. 1.Department of Ecology and Evolutionary Biology, and the Biodiversity InstituteUniversity of KansasLawrenceUSA
  2. 2.CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Faculdade de Ciências TecnoclogiaUniversidade dos AçoresPonta DelgadaPortugal
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceUSA
  4. 4.Department of Ecology and Ecosystem Management, Plant Biodiversity ResearchTechnical University of MunichFreisingGermany

Personalised recommendations