Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 2, pp 151–168 | Cite as

Pollen morphology in natural diploid–polyploid hybridogeneous complex of the genus Onosma (Boraginaceae–Lithospermeae)

  • V. KolarčikEmail author
  • D. Vašková
  • M. Mirková
  • P. Mártonfi
Original Article
  • 121 Downloads

Abstract

The size and shape of the pollen grains are studied in a hybridogeneous complex of the genus Onosma. This plant system encompasses the hybrid taxa O. helvetica and O. pseudoarenaria with bimodal karyotypes that comprise large and small chromosomes and their ancestral lineages, paternal O. fastigiata and Asterotricha taxa belonging to a maternal lineage. The pollen grains are investigated under light microscopy, and the size and shape parameters are retrieved based on image analysis of the pollen grain outlines. The shape of the pollen grain is analyzed by applying elliptic Fourier transform coupled with principal component analysis. Extensive size and shape variations of the pollen grain within cytotypes as well as differences between cytotypes are recorded. The cytotypes are mostly differentiated due to the size parameters of the pollen grain that are correlated with ploidy level and the proportion of large and small chromosomes. Despite significant differences being observed between cytotypes, the precise identification of the ploidy level of an individual based on the pollen size and shape analysis is not possible in most of the cases, mostly due to extensive intracytotype variation. Allometric analyses exhibit a different relation between the pollen shape and size in case of cytotypes. The ratio of polar to equatorial axes length is, generally, a good approximation of the pollen shape. However, the study clearly exhibits that the relation between pollen shape and the ratio of polar to equatorial axes length is different for cytotypes, which justifies the application of outline analysis in palynological studies.

Keywords

Elliptic Fourier transform Heteropolar pollen grain Outline analysis Ploidy level Pollen size 

Notes

Acknowledgements

We are grateful to all colleagues, who are listed in Table 1 and helped us to collect plant material and to J. Doležel, who provided seed material of FCM reference standard. We would like to thank Enago (www.enago.com) for English language editing. The Ministry of Environment of the Slovak Republic generously provided us with exception from Nature Conservation of Ministry of Environment of the Slovak Republic No. 1210/481/05-5.1 and allowed us to collect plant material in Slovakia.

Funding

This study was funded by the Grant Agency for Science, Bratislava (VEGA, No. 1/0512/15).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

606_2018_1559_MOESM1_ESM.pdf (259 kb)
Supplementary material 1 (PDF 529 kb)
606_2018_1559_MOESM2_ESM.pdf (263 kb)
Supplementary material 1 (PDF 529 kb)
606_2018_1559_MOESM3_ESM.pdf (266 kb)
Supplementary material 1 (PDF 529 kb)

References

  1. Adams DC, Rohlf FJ, Slice DE (2013) A field comes of age: geometric morphometrics in the 21st century. Hystrix 24:7–14.  https://doi.org/10.4404/hystrix-24.1-6283 CrossRefGoogle Scholar
  2. Ball PW (1972) 9. Onosma L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds)Flora Europaea, vol. 3. Diapensiaceae to Myoporaceae. Cambridge University Press, Cambridge, pp 89–92Google Scholar
  3. Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc Roy Soc London Ser B Biol Sci 181:109–135.  https://doi.org/10.1098/rspb.1972.0042 CrossRefGoogle Scholar
  4. Binzet R, Kandemir İ, Orcan N (2010) Palynological classification of Onosma L. (Boraginaceae) species from east Mediterranean region in Turkey. Acta Bot Croat 69:259–274Google Scholar
  5. Binzet R (2011) Pollen morphology of some Onosma species (Boraginaceae) from Turkey. Pakistan J Bot 43:731–741Google Scholar
  6. Bonhomme V, Prasad S, Gaucherel C (2013) Intraspecific variability of pollen morphology as revealed by elliptic Fourier analysis. Pl Syst Evol 299:811–816.  https://doi.org/10.1007/s00606-013-0762-5 CrossRefGoogle Scholar
  7. Bonhomme V, Picq S, Gaucherel C, Claude J (2014) Momocs: outline analysis using R. J Stat Softw 56:1–24.  https://doi.org/10.18637/jss.v056.i13 CrossRefGoogle Scholar
  8. Bonhomme V, Forster E, Wallace M, Stillman E, Charles M, Jones G (2017) Identification of inter- and intra-species variation in cereal grains through geometric morphometric analysis, and its resilience under experimental charring. J Archaeol Sci 86:60–67.  https://doi.org/10.1016/j.jas.2017.09.010 CrossRefGoogle Scholar
  9. Buggs RJ, Wendel JF, Doyle JJ, Soltis DE, Soltis PS, Coate JE (2014) The legacy of diploid progenitors in allopolyploid gene expression patterns. Philos Trans Ser B 369:20130354.  https://doi.org/10.1098/rstb.2013.0354 CrossRefGoogle Scholar
  10. Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the C-value paradox. J Cell Sci 34:247–278PubMedGoogle Scholar
  11. Chacón J, Luebert F, Hilger HH, Ovchinnikova S, Selvi F, Cecchi L, Guilliams CM, Hasenstab-Lehman K, Sutorý K, Simpson MG, Weigend M (2016) The borage family (Boraginaceae s.str.): A revised infrafamilial classification based on new phylogenetic evidence, with emphasis on the placement of some enigmatic genera. Taxon 65:523–546.  https://doi.org/10.12705/653.6 CrossRefGoogle Scholar
  12. Cecchi L, Coppi A, Selvi F (2016) Onosma juliae (Boraginaceae), a new species from southern Turkey, with remarks on the systematics of Onosma in the Irano-Turanian region. Phytotaxa 288:201–213.  https://doi.org/10.11646/phytotaxa.288.3.1 CrossRefGoogle Scholar
  13. de Souza LR, Carneiro-Torres DS, Saba MD, dos Santos FAR (2017) Pollen morphology of the Acalyphoideae and Euphorbioideae (Euphorbiaceae) of the Caatinga ecoregion in Brazil. Pl Syst Evol 303:1161–1180.  https://doi.org/10.1007/s00606-017-1429-4 CrossRefGoogle Scholar
  14. De Storme N, Zamariola L, Mau M, Sharbel TF, Geelen D (2013) Volume-based pollen size analysis: an advanced method to assess somatic and gametophytic ploidy in flowering plants. Pl Reprod 26:65–81.  https://doi.org/10.1007/s00497-012-0209-0 CrossRefGoogle Scholar
  15. Doležel J (1991) Flow cytometric analysis of nuclear DNA content in higher plants. Phytochem Analysis 2:143–154.  https://doi.org/10.1002/pca.2800020402 CrossRefGoogle Scholar
  16. Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Pl 85:625–631.  https://doi.org/10.1111/j.1399-3054.1992.tb04764.x CrossRefGoogle Scholar
  17. Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106.  https://doi.org/10.1002/cyto.990190203 CrossRefPubMedGoogle Scholar
  18. Doyle JJ, Egan AN (2010) Dating the origins of polyploidy events. New Phytol 186:73–85.  https://doi.org/10.1111/j.1469-8137.2009.03118.x CrossRefPubMedGoogle Scholar
  19. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20.  https://doi.org/10.18637/jss.v022.i04 CrossRefGoogle Scholar
  20. El-Amier YA (2015) Morphological studies of the pollen grains for some hydrophytes in coastal Mediterranean lakes. Egypt. Egypt J Basic Appl Sci 2:132–138.  https://doi.org/10.1016/j.ejbas.2015.04.001 CrossRefGoogle Scholar
  21. Erdtman G (1986) Pollen morphology and plant taxonomy: angiosperms (an introduction to palynology). EJ Brill, LeidenGoogle Scholar
  22. Friendly M, Fox J (2017) Candisc: visualizing generalized canonical discriminant and canonical correlation analysis. R package version 0.8-0. Available at: https://cran.r-project.org/web/packages/candisc/
  23. Grant V (1971) Plant speciation, 1st edn. Columbia University Press, New York, LondonGoogle Scholar
  24. Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes, and genomes. Wiley-VCH, Weinheim, pp 67–101.  https://doi.org/10.1002/9783527610921.ch4 CrossRefGoogle Scholar
  25. Huynh K-L (1972) The original position of the generative nucleus in the pollen tetrads of Agropyron, Itea, Limnanthes, and Onosma, and its phylogenetic significance in the Angiosperms. Grana 12:105–112.  https://doi.org/10.1080/00173137209428834 CrossRefGoogle Scholar
  26. Ivakov A, Persson S (2013) Plant cell shape: modulators and measurements. Frontiers Pl Sci 4:439.  https://doi.org/10.3389/fpls.2013.00439 CrossRefGoogle Scholar
  27. Julca I, Marcet-Houben M, Vargas P, Gabaldón T (2018) Phylogenomics of the olive tree (Olea europaea) reveals the relative contribution of ancient allo- and autopolyploidization events. BMC Biol 16:15.  https://doi.org/10.1186/s12915-018-0482-y CrossRefPubMedPubMedCentralGoogle Scholar
  28. Karlsdóttir L, Hallsdótir M, Thórson AT, Anamthawat-Jónsson K (2008) Characteristics of pollen from natural triploid Betula hybrids. Grana 47:52–59.  https://doi.org/10.1080/00173130801927498 CrossRefGoogle Scholar
  29. Kelly JK, Rasch A, Kalisz S (2002) A method to estimate pollen viability from pollen size variation. Amer J Bot 89:1021–1023.  https://doi.org/10.3732/ajb.89.6.1021 CrossRefGoogle Scholar
  30. Knight CA, Clancy RB, Götzenberger L, Dann L, Beaulieu JM (2010) On the relationship between pollen size and genome size. J Bot 2010:612017.  https://doi.org/10.1155/2010/612017 CrossRefGoogle Scholar
  31. Kolarčik V, Zozomová-Lihová J, Mártonfi P (2010a) Systematics and evolutionary history of the Asterotricha group of the genus Onosma (Boraginaceae) in central and southern Europe inferred from AFLP and nrDNA ITS data. Pl Syst Evol 290:21–45.  https://doi.org/10.1007/s00606-010-0346-6 CrossRefGoogle Scholar
  32. Kolarčik V, Moravčik M, Zozomová-Lihová J, Mártonfi P (2010b) (Report) In: Marhold K (ed) IAPT/IOPB chromosome data 10. Taxon 59: 1934–1938, E3–E4Google Scholar
  33. Kolarčik V, Zozomová-Lihová J, Ducár E, Mártonfi P (2014) Evolutionary significance of hybridization in Onosma (Boraginaceae): analyses of stabilized hemisexual odd polyploids and recent sterile hybrids. Biol J Linn Soc 112:89–107.  https://doi.org/10.1111/bij.12270 CrossRefGoogle Scholar
  34. Kolarčik V, Ducár E, Kačmárová T (2015) Patterns of pollen stainability in polyploids of the genus Onosma (Boraginaceae). Pl Ecol Evol 148:76–89.  https://doi.org/10.5091/plecevo.2015.1053 CrossRefGoogle Scholar
  35. Kolarčik V, Kocová V, Caković D, Kačmárová T, Piovár J, Mártonfi P (2018a) Nuclear genome size variation in the allopolyploid Onosma arenariaO. pseudoarenaria species group: methodological issues and revised data. Botany 96:397–410.  https://doi.org/10.1139/cjb-2017-0164 CrossRefGoogle Scholar
  36. Kolarčik V, Kocová V, Vašková D (2018b) Flow cytometric seed screen data are consistent with models of chromosome inheritance in asymmetrically compensating allopolyploids. Cytometry A 93A:737–748.  https://doi.org/10.1002/cyto.a.23511 CrossRefGoogle Scholar
  37. Kovařík A, Besendorfer V, Plohl M, Schranz E (2017) Polyploidy in deep and shallow evolutionary times: from ancient cotton, middle aged tobacco to recently formed monkey-flowers. Pl Syst Evol 303:987–989.  https://doi.org/10.1007/s00606-017-1462-3 CrossRefGoogle Scholar
  38. Kriebel R, Khabbazian M, Sytsma KJ (2017) A continuous morphological approach to study the evolution of pollen in a phylogenetic context: an example with the order Myrtales. PLoS ONE 12:e0187228.  https://doi.org/10.1371/journal.pone.0187228 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lazarević M, Siljak-Yakovlev S, Lazarević P, Stevanović B, Stevanović V (2013) Pollen and seed morphology of resurrection plants from the genus Ramonda (Gesneriaceae): relationship with ploidy level and relevance to their ecology and identification. Turkish J Bot 37:872–885.  https://doi.org/10.3906/bot-1209-58 CrossRefGoogle Scholar
  40. Liu J-X, Li J-Y, Zhang Y-L, Ning J-C (2010) Pollen morphology of the tribe Lithospermeae of Boraginoideae in China and its taxonomic significance. Pl Syst Evol 290:75–83.  https://doi.org/10.1007/s00606-010-0350-x CrossRefGoogle Scholar
  41. Loureiro J, Rodriguez E, Doležel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot (Oxford) 100:875–888.  https://doi.org/10.1093/aob/mcm152 CrossRefGoogle Scholar
  42. Maggi F, Kolarčik V, Mártonfi P (2008) Palynological analysis of five selected Onosma taxa. Biologia (Bratislava) 63:183–186.  https://doi.org/10.2478/s11756-008-0026-y CrossRefGoogle Scholar
  43. Marinho RC, Mendes-Rodrigues C, Bonetti AM, Oliviera PE (2014) Pollen and stomata morphometrics and polyploidy in Eriotheca (Malvaceae-Bombacoideae). Pl Biol (Stuttgart) 16:508–511.  https://doi.org/10.1111/plb.12135 CrossRefGoogle Scholar
  44. Mártonfi P, Mártonfiová L, Kolarčik V (2008) Karyotypes and genome size of Onosma species from northern limits of the genus in Carpathians. Caryologia 61:363–374.  https://doi.org/10.1080/00087114.2008.10589648 CrossRefGoogle Scholar
  45. Mártonfiová L (2013) A method of standardization of chromosome length measurement. Caryologia 66:304–312.  https://doi.org/10.1080/00087114.2013.854565 CrossRefGoogle Scholar
  46. Mehrabian A, Sheidai M, Noormohammadi Z, Mozafarian V, Asrei Y (2012) Palynological diversity in the genus Onosma L. (Boraginaceae) of Iran. Ann Biol Res 3:3885–3893Google Scholar
  47. Mengoni A, Selvi F, Cusimano N, Galardi F, Gonnelli C (2006) Genetic diversity inferred from AFLP fingerprinting in populations of Onosma echioides (Boraginaceae) from serpentine and calcareous soils. Pl Biosystems 140:211–219.  https://doi.org/10.1080/11263500600756660 CrossRefGoogle Scholar
  48. Padilla-García N, Rojas-Andrés BM, López-González N, Castro M, Castro S, Loureiro J, Albach DC, Machon N, Martínez-Ortega MM (2018) The challenge of species delimitation in the diploid-polyploid complex Veronica subsection Pentasepalae. Molec Phylogen Evol 119:196–209.  https://doi.org/10.1016/j.ympev.2017.11.007 CrossRefGoogle Scholar
  49. Pellicer J, Hidalgo O, Garcia S, Garnatje T, Korobkov AA, Vallés J, Martín J (2009) Palynological study of Ajania and related genera (Asteraceae, Anthemideae). Bot J Linn Soc 161:171–189.  https://doi.org/10.1111/j.1095-8339.2009.00998.x CrossRefGoogle Scholar
  50. Peruzzi L, Passalacqua NG (2008) Taxonomy of the Onosma echioides (L.) L. complex (Boraginaceae) based on morphometric analysis. Bot J Linn Soc 157:763–774.  https://doi.org/10.1111/j.1095-8339.2008.00827.x CrossRefGoogle Scholar
  51. Perveen A, Qureshi US, Shaheen U, Qaiser M (1995) Pollen flora of Pakistan – IV. Boraginaceae. Pakistan J Bot 27:327–360Google Scholar
  52. Perveen A (2000) Pollen characters and their evolutionary significance with special reference to the flora of Karachi. Turkish J Biol 24:365–377Google Scholar
  53. Qureshi US, Qaiser M (1987) Palynological study of Onosma (Boraginaceae) from Pakistan. Pakistan J Bot 19:99–105Google Scholar
  54. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  55. Rauschert S (1976) Zur Nomenklatur und Chorologie des Formenkreises von Onosma pseudoarenarium Schur s. lat. Folia Geobot Phytotax 11:269–279.  https://doi.org/10.1007/BF02909475 CrossRefGoogle Scholar
  56. Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132.  https://doi.org/10.1016/0169-5347(93)90024-J CrossRefGoogle Scholar
  57. Rohlf FJ (2015) The tps series of software. Hystrix 26:9–12.  https://doi.org/10.4404/hystrix-26.1-11264 CrossRefGoogle Scholar
  58. Rotreklová O, Krahulcová A (2016) Estimating paternal efficiency in an agamic polyploid complex: pollen stainability and variation in pollen size related to reproduction mode, ploidy level and hybridogenous origin in Pilosella (Asteraceae). Folia Geobot 51:175–186.  https://doi.org/10.1007/s12224-016-9240-5 CrossRefGoogle Scholar
  59. Schanzer IA, Elkordy AA (2014) On the correlation of pollen grain size and ploidy levels of genus Galium sect. Platygalium. RUDN J Agron Anim Indust 3:5–17.  https://doi.org/10.22363/2312-797X-2014-3-5-17 CrossRefGoogle Scholar
  60. Schinkel CCF, Kirchheimer B, Dullinger S, Geelen D, De Storme N, Hörandl E (2017) Pathways to polyploidy: indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). Pl Syst Evol 303:1093–1108.  https://doi.org/10.1007/s00606-017-1435-6 CrossRefGoogle Scholar
  61. Soltis PS, Soltis DE (2016) Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Pl Biol 30:159–165.  https://doi.org/10.1016/j.pbi.2016.03.015 CrossRefGoogle Scholar
  62. Song J-H, Moon H-K, Oak M-K, Hong S-P (2017) Phylogenetic evaluation of pollen and orbicule morphology in Rosaceae tribe Neillieae (subfamily Amygdaloideae). Bot J Linn Soc 183:439–453.  https://doi.org/10.1093/botlinnean/bow019 CrossRefGoogle Scholar
  63. Tate JA, Simpson BB (2004) Breeding system evolution in Tarasa (Malvaceae) and selection for reduced pollen grain size in the polyploid species. Amer J Bot 91:207–213.  https://doi.org/10.3732/ajb.91.2.207 CrossRefGoogle Scholar
  64. Teppner H (1971) Cytosystematik, bimodale Chromosomensätze und permanente Anorthoploidie bei Onosma (Boraginaceae). Österr Bot Z 119:196–233.  https://doi.org/10.1007/BF01373117 CrossRefGoogle Scholar
  65. Teppner H (1972) Cytosystematische Studien an Onosma (Boraginaceae) Die Formenkreise von O. echioides, O. helveticum und O. arenarium. Ber Deutsch Bot Ges 84:691–696Google Scholar
  66. Teppner H (1974) Karyosystematik einiger Asiatischer Onosma-Arten (Boraginaceae), inkl. O. inexspectatum Teppner, spec. nov. Pl Syst Evol 123:61–82.  https://doi.org/10.1007/BF00983286 CrossRefGoogle Scholar
  67. Teppner H (1991a) Onosma L. In: Strid A, Tan K (eds) Mountain flora of Greece, vol. 2. University Press, Edinburgh, pp 25–38Google Scholar
  68. Teppner H (1991b) Karyology of some Greek Onosma species (Boraginaceae). Bot Chron (Patras) 10:271–292Google Scholar
  69. Teppner H (1996) Die Onosma-Arten (Boraginaceae-Lithospermeae) Rumäniens. Stapfia 45:47–54Google Scholar
  70. Teppner H (2008) An asterotrichous, hexaploid Onosma from Bulgaria: O. malkarmayorum spec. nova (Boraginaceae-Lithospermeae). Phyton (Horn) 48:117–132Google Scholar
  71. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  72. Vilhar B, Vidic T, Jogan N, Dermastia M (2002) Genome size and the nucleolar number as estimators of ploidy level in Dactylis glomerata in the Slovenian Alps. Pl Syst Evol 234:1–13.  https://doi.org/10.1007/s00606-002-0186-0 CrossRefGoogle Scholar
  73. Vouillamoz J (1999–2000) Nombre chromosomique et origine allopolyploïde de l’Onosma pseudoarenaria Schur subsp. pseudoarenaria Rauschert (Boraginaceae) en Transylvanie (Roumanie). Contr Bot 1:5–14Google Scholar
  74. Vouillamoz J (2000) Inventaire critique, nombre chromosomique et chorologie d’Onosma helvetica (A. DC.) Boissier et Onosma pseudoarenaria Schur s.l. (Boraginaceae) en Suisse. Bull Murith Soc Valais Sci Nat 117:45–59Google Scholar
  75. Vouillamoz J (2001) Approches cytotaxonomique et moléculaire de la phylogéographie des taxons du genre Onosma (Boraginaceae) en Suisse et dans les pays limitrophes. PhD Thesis, Université de Lausanne, LausanneGoogle Scholar
  76. Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev Cambridge Philos Soc 81:259–291.  https://doi.org/10.1017/S1464793106007007 CrossRefPubMedGoogle Scholar
  77. Warton DI, Duursma RA, Falster DS, Taskinen S (2012) Smatr 3 - an R package for estimation and inference about allometric lines. Meth Ecol Evol 3:257–259.  https://doi.org/10.1111/j.2041-210X.2011.00153.x CrossRefGoogle Scholar
  78. Wickham H (2009) ggplot2: elegant graphics for data analysis, 1st edn. Springer, New YorkCrossRefGoogle Scholar
  79. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879.  https://doi.org/10.1073/pnas.0811575106 CrossRefPubMedGoogle Scholar
  80. Wrońska-Pilarek D, Bocianowski J, Jagodziński AM (2013) Comparison of pollen grain morphological features of selected species of the genus Crataegus (Rosaceae) and their spontaneous hybrids. Bot J Linn Soc 172:555–571.  https://doi.org/10.1111/boj.12033 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • V. Kolarčik
    • 1
    Email author
  • D. Vašková
    • 1
  • M. Mirková
    • 1
  • P. Mártonfi
    • 1
  1. 1.Institute of Biology and Ecology, Faculty of ScienceP. J. Šafárik UniversityKosiceSlovak Republic

Personalised recommendations