Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 2, pp 103–114 | Cite as

Beyond taxonomy: anther skirt is a diagnostic character that provides specialized noctuid pollination in Marsdenia megalantha (Asclepiadoideae–Apocynaceae)

  • Arthur Domingos-MeloEmail author
  • Tarcila L. Nadia
  • Ana P. Wiemer
  • Andrea A. Cocucci
  • Isabel C. Machado
Original Article

Abstract

Taxonomic diagnostic floral structures can be very informative about details of the floral mechanism, promoting baselines for inferences about pollination system. In a number of species in the milkweed tribe Marsdenieae, the already complex basic asclepiad flower structure is further elaborated by the evolution of one morphological novelty: the anther skirt. Since the functional significance of this trait is poorly understood, we investigate its role in the pollination mechanism on Marsdenia megalantha. We tested the phenotypic integration of anther skirt; we described its functional anatomy; we identified and recorded the function of its nectaries; we described and tested in laboratory its contribution to the pollination mechanism; and we studied the pollination effectiveness of this system. The characteristics of an anther skirt are essential in the noctuid pollination of M. megalantha. This is due to its particular morphological and anatomical features related to its ability both to secrete at night and to contain nectar independently from the stigmatic chamber. The skirt also functions coordinately with the corona as a funnel that directs the noctuid legs to gynostegium. Its effectiveness in producing pollination was confirmed by field observations and manipulative experiments. We suggest that nectar offers at night and mechanical adjustment may be applicable to other representatives of the tribe as a feature that determines noctuid pollination, assigning a functional value for the anther skirt beyond the taxonomy.

Keywords

Anther skirt Asclepiadoideae Gynostegium Lepidoptera pollination Marsdenieae Substitutive nectaries 

Notes

Acknowledgements

The authors thanks to PELD-Catimbau (Programa de Pesquisa Ecológica de Longa Duração), CNPq 459485/2014-8 (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FACEPE (Fundação de Amparo à Ciência e Tecnologia de Pernambuco) that supported this research; to RPPN-Almas (Reserva Particular do Patrimônio Natural Fazenda Almas) and Roberto Lima for the granting the place for research and field logistics; to Adriana Perez and Alejandra Trenchi for the technical support; to Inara R. Leal and Alícia Sérsic for reading and contributions; and to Alexander von Humboldt Foundation for the donation of optical equipment. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES)—Finance Code 001.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

  1. Altenburger R, Matile P (1988) Circadian rhythmicity of fragrance emission in flowers of Hoya carnosa R. Br. Planta 174:248–252CrossRefGoogle Scholar
  2. Anderson WR (1979) Floral Conservatism in neotropical Malpighiaceae. Biotropica 11:219–223.  https://doi.org/10.2307/2388042 CrossRefGoogle Scholar
  3. Andrade KVSA, Rodal MJN, Lucena MDF, Gomes APS (2004) Composição florística de um trecho do Parque Nacional do Catimbau, Buíque, Pernambuco-Brasil. Hoehnea 31:337–348Google Scholar
  4. Araújo LDA, Quirino ZGM, Machado IC (2014) High specialisation in the pollination system of Mandevilla tenuifolia (JC Mikan) Woodson (Apocynaceae) drives the effectiveness of butterflies as pollinators. Pl Biol 16:947–955.  https://doi.org/10.1111/plb.12152 CrossRefGoogle Scholar
  5. Aronne G, Wilcock CC (1994) Reproductive characteristics and breeding system of shrubs of the Mediterranean region. Funct Ecol 8:69–76.  https://doi.org/10.2307/2390113 CrossRefGoogle Scholar
  6. Baranzelli M, Sérsic A, Cocucci AA (2014) The search for Pleiades in trait constellations: functional integration and phenotypic selection in the complex flowers of Morrenia brachystephana (Apocynaceae). J Evol Biol 27:724–736.  https://doi.org/10.1111/jeb.12341 CrossRefPubMedGoogle Scholar
  7. Barrios B, Pena SR, Salas A, Koptur S (2016) Butterflies visit more frequently, but bees are better pollinators: the importance of mouthpart dimensions in effective pollen removal and deposition. AoB Plants 8:plw001.  https://doi.org/10.1093/aobpla/plw001 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Campbell DR, Waser NM, Price MV (1996) Mechanisms of hummingbird-mediated selection for flower width in Ipomopsis aggregata. Ecology 77:1463–1472.  https://doi.org/10.2307/2265543 CrossRefGoogle Scholar
  9. Christ P, Schnepf E (1985) The nectaries of Cynanchum vincetoxicum (Asclepiadaceae). Israel J Pl Sci 34:79–90Google Scholar
  10. Cocucci AA, Marino S, Baranzelli M, Wiemer AP, Sérsic A (2014) The buck in the milkweed: evidence of male–male interference among pollinaria on pollinators. New Phytol 203:280–286.  https://doi.org/10.1111/nph.12766 CrossRefPubMedGoogle Scholar
  11. Cruden RW (1977) Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32–46CrossRefGoogle Scholar
  12. de Vattimo I (1984) Quatro novas espécies do Gênero Jacaranda Jussieu (Bignoniaceae). Rodriguésia 36:79–83CrossRefGoogle Scholar
  13. Dieringer G, Cabrera L (2001) Pollination ecology of bristle staminodia in Penstemon digitalis (Scrophulariaceae) and Jacaranda acutifolia (Bignoniaceae). Biotam 12:31–36Google Scholar
  14. Domingos-Melo A, Nadia TL, Machado IC (2017) Complex flowers and rare pollinators: does ant pollination in Ditassa show a stable system in Asclepiadoideae (Apocynaceae)? Arthropod Pl Interact 11:339–349.  https://doi.org/10.1007/s11829-017-9499-3 CrossRefGoogle Scholar
  15. Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, New YorkGoogle Scholar
  16. Endress ME, Stevens WD (2001) The renaissance of the Apocynaceae sl: recent advances in systematics, phylogeny, and evolution. Ann Missouri Bot Gard 88:517–522.  https://doi.org/10.2307/3298631 CrossRefGoogle Scholar
  17. Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, OxfordGoogle Scholar
  18. Fallen ME (1985) The gynoecial development and systematic position of Allamanda (Apocynaceae). Amer J Bot 72:572–579.  https://doi.org/10.1002/j.1537-2197.1985.tb08311.x CrossRefGoogle Scholar
  19. Fenster CB, Martén-Rodríguez S (2007) Reproductive assurance and the evolution of pollination specialization. Int J Pl Sci 168:215–228CrossRefGoogle Scholar
  20. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annual Rev Ecol Evol Syst 35:375–403.  https://doi.org/10.1146/annurev.ecolsys.34.011802.132347 CrossRefGoogle Scholar
  21. Fishbein M (2001) Evolutionary innovation and diversification in the flowers of Asclepiadaceae. Ann Missouri Bot Gard 88:603–623.  https://doi.org/10.2307/3298636 CrossRefGoogle Scholar
  22. Forster PI (1992) Pollination of Hoya australis (Asclepiadaceae) by Ocybadistes walkerisothis (Lepidoptera: Hesperiidae). Austral Entomol 19:39–43Google Scholar
  23. Galetto L (1997) Flower structure and nectar chemical composition in three Argentine Apocynaceae. Flora 192:197–207CrossRefGoogle Scholar
  24. Galetto L (2006) Morfología y anatomía floral en especies de Apocynaceae-Asclepiadoidea. Kurtziana 32:5–11Google Scholar
  25. Galil J, Zeroni M (1965) Nectar system of Asclepias curassavica. Bot Gaz 126:144–148CrossRefGoogle Scholar
  26. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc Roy Soc Edinburgh Biol 205:581–598.  https://doi.org/10.1098/rspb.1979.0086 CrossRefGoogle Scholar
  27. Goyder D, Morillo G (1994) A new species of Marsdenia (Asclepiadaceae) from NE Brazil. Asklepios 63:18–20Google Scholar
  28. Kerns CA, Inouye DW (1993) Techniques for pollination biologists. University of Colorado Press, NiwotGoogle Scholar
  29. Kohn JR, Graham SW, Morton B, Doyle JJ, Barrett SC (1996) Reconstruction of the evolution of reproductive characters in Pontederiaceae using phylogenetic evidence from chloroplast DNA restriction-site variation. Evolution 50:1454–1469.  https://doi.org/10.1111/j.1558-5646.1996.tb03919.x CrossRefPubMedGoogle Scholar
  30. Krings A (1999) Observations on the pollination biology and flowering phenology of Texan Matelea reticulata (Engelm. ex A. Gray) Woods. (Asclepiadaceae). Madroño 46:155–158Google Scholar
  31. Kunze H (1997) Corona and nectar system in Asclepiadinae (Asclepiadaceae). Flora 192:175–183CrossRefGoogle Scholar
  32. Kunze H, Wanntorp L (2008a) Corona and anther skirt in Hoya (Apocynaceae, Marsdenieae). Pl Syst Evol 271:9–17.  https://doi.org/10.1007/s00606-007-0602-6 CrossRefGoogle Scholar
  33. Kunze H, Wanntorp L (2008b) The gynostegium of Hoya spartioides (Apocynaceae–Asclepiadoideae): A striking case of incongruence between molecular and phenotypic evolution. Organisms Diversity Evol 8:346–357.  https://doi.org/10.1016/j.ode.2008.06.002 CrossRefGoogle Scholar
  34. La Rosa RJ, Conner JK (2017) Floral function: effects of traits on pollinators, male and female pollination success, and female fitness across three species of milkweeds (Asclepias). Amer J Bot 104:150–160.  https://doi.org/10.3732/ajb.1600328 CrossRefGoogle Scholar
  35. Leite AVL, Machado IC (2010) Reproductive biology of woody species in Caatinga, a dry forest of northeastern Brazil. J Arid Environm 74:1374–1380.  https://doi.org/10.1016/j.jaridenv.2010.05.029 CrossRefGoogle Scholar
  36. Liede S (1994) Some observations on pollination in Mexican Asclepiadaceae. Madroño 41:266–276Google Scholar
  37. Liede S, Kunze H (1993) A descriptive system for corona analysis in Asclepiadaceae and Periplocaceae. Pl Syst Evol 185:275–284CrossRefGoogle Scholar
  38. Lopes AV, Vogel S, Machado IC (2002) Secretory trichomes, a substitutive floral nectar source in Lundia A. DC. (Bignoniaceae), a genus lacking a functional disc. Ann Bot (Oxford) 90:169–174.  https://doi.org/10.1093/aob/mcf169 CrossRefGoogle Scholar
  39. Meve U, Liede S (1994) Floral biology and pollination in stapeliads—new results and the literature review. Pl Syst Evol 192(1–2):99–116CrossRefGoogle Scholar
  40. Mochizuki K, Furukawa S, Kawakita A (2017) Pollinia transfer on moth legs in Hoya carnosa (Apocynaceae). Amer J Bot 104:953–960.  https://doi.org/10.3732/ajb.1700078 CrossRefGoogle Scholar
  41. Morillo G (1978) El género Marsdenia en Venezuela, Colombia y Ecuador. Acta Bot Venez 13:23–74Google Scholar
  42. Nilsson LA (1988) The evolution of flowers with deep corolla tubes. Nature 334:147–149CrossRefGoogle Scholar
  43. Ollerton J, Liede S (1997) Pollination systems in the Asclepiadaceae: a survey and preliminary analysis. Biol J Linn Soc 62:593–610.  https://doi.org/10.1111/j.1095-8312.1997.tb00324.x CrossRefGoogle Scholar
  44. Ollerton J, Liede S (2003) Corona structure in Cynanchum: linking morphology to function. Ecotropica 9:107–112Google Scholar
  45. Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56:717–728CrossRefGoogle Scholar
  46. Ollerton J, Liede-Schumann S, Endress ME et al (2018) The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study. Ann Bot (Online First).  https://doi.org/10.1093/aob/mcy127 CrossRefGoogle Scholar
  47. Omlor R (1998) Generische Revision der Marsdenieae (Asclepiadaceae), PhD Thesis, University of Kaiserslautern, KaiserslauternGoogle Scholar
  48. Pauw A (1998) Pollen transfer on birds’ tongues. Nature 394:731–732CrossRefGoogle Scholar
  49. Possobom CCF, Guimarães E, Machado SR (2015) Structure and secretion mechanisms of floral glands in Diplopterys pubipetala (Malpighiaceae), a neotropical species. Flora 211:26–39.  https://doi.org/10.1016/j.flora.2015.01.002 CrossRefGoogle Scholar
  50. Pott MB, Pichersky E, Piechulla B (2002) Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of Stephanotis floribunda. J Pl Physiol 159:925–934CrossRefGoogle Scholar
  51. Prenner G, Bateman RM, Rudall PJ (2010) Floral formulae updated for routine inclusion in formal taxonomic descriptions. Taxon 59:241–250Google Scholar
  52. Rapini A, Pereira JF (2011) Two new species of Marsdenia R. Br. (Apocynaceae: Asclepiadoideae) from the semi-arid region of Brazil. Kew Bull 66:137–142CrossRefGoogle Scholar
  53. Rapini A, van den Berg C, Liede-Schumann S (2007) Diversification of Asclepiadoideae (Apocynaceae) in the new world. Ann Missouri Bot Gard 94:407–422CrossRefGoogle Scholar
  54. Rudall PJ, Bateman RM (2002) Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol Rev 77(403–44):1.  https://doi.org/10.1017/S1464793102005936 CrossRefGoogle Scholar
  55. Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, New YorkGoogle Scholar
  56. Shuttleworth A, Johnson SD (2009) Palp-faction: an African milkweed dismembers its wasp pollinators. Environm Entomol 38:741–747.  https://doi.org/10.1603/022.038.0326 CrossRefGoogle Scholar
  57. Singh HB, Subramanium B (2008) Field manual of herbarium techniques. NISCAIR, New DelhiGoogle Scholar
  58. SpeciesLink (2016) Sistema de Informação Distribuído para Coleções Científicas. Available at: http://www.splink.org.br/index?lang=pt. Accessed 1 Dec 2017
  59. Teixeira SP, Borba EL, Semir J (2004) Lip anatomy and its implications for the pollination mechanisms of Bulbophyllum species (Orchidaceae). Ann Bot (Oxford) 93:499–505.  https://doi.org/10.1093/aob/mch072 CrossRefGoogle Scholar
  60. Thomas V (1992) Structure and biology of floral nectary in Allamanda cathartica L. (Apocynaceae). Feddes Repert 103:357–361.  https://doi.org/10.1002/fedr.19921030512 CrossRefGoogle Scholar
  61. Velloso AL (2002) Ecorregioes propostos para o bioma da caatinga. Recife, Instituto de Conservacao Ambiental The Nature Conservancy do BrasilGoogle Scholar
  62. Vieira MF, Grabalos R (2003) Sistema reprodutivo de Oxypetalum mexiae Malme (Asclepiadaceae), espécie endêmica de Viçosa, MG, Brasil, em perigo de extinção. Acta Bot Brasil 17:137–145CrossRefGoogle Scholar
  63. Vieira MF, Fonseca RS, Shepherd GJ (2012) Morfologia floral e mecanismos de polinização em espécies de Oxypetalum R. Br. (Apocynaceae, Asclepiadoideae). Revista Brasil Biocienc 10:221–314Google Scholar
  64. Vogel S (1990) History of the Malpighiaceae in the light of pollination ecology. Mem New York Bot Gard 55:130–142Google Scholar
  65. Vogel S (1997) Remarkable nectaries: structure, ecology, organophyletic perspectives. I. Substitutive nectaries. Flora 192:305–333.  https://doi.org/10.1016/S0367-2530(17)30812-5 CrossRefGoogle Scholar
  66. Vogel S (1998a) Remarkable nectaries: structure, ecology, organophyletic perspectives: II. Nectarioles. Flora 193:1–29.  https://doi.org/10.1016/S0367-2530(17)30812-5 CrossRefGoogle Scholar
  67. Vogel S (1998b) Remarkable nectaries: structure, ecology, organophyletic perspectives III. Nectar ducts. Flora 193:113–131.  https://doi.org/10.1016/S0367-2530(17)30827-7 CrossRefGoogle Scholar
  68. Wanntorp L, Kunze H (2009) Identifying synapomorphies in the flowers of Hoya and Dischidia—toward phylogenetic understanding. Int J Pl Sci 170:331–342CrossRefGoogle Scholar
  69. Wanntorp L, Kocyan A, van Donkelaar R, Renner SS (2006) Towards a monophyletic Hoya (Marsdenieae, Apocynaceae): inferences from the chloroplast trnL region and the rbcL-atpB spacer. Syst Bot 31:586–596.  https://doi.org/10.1600/036364406778388593 CrossRefGoogle Scholar
  70. Webb C, Lloyd DG (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zealand J Bot 24:163–178.  https://doi.org/10.1080/0028825X.1986.10409726 CrossRefGoogle Scholar
  71. Whitney HM, Chittka L, Bruce TJ, Glover BJ (2009) Conical epidermal cells allow bees to grip flowers and increase foraging efficiency. Curr Biol 19:948–953.  https://doi.org/10.1016/j.cub.2009.04.051 CrossRefPubMedGoogle Scholar
  72. Wiemer AP, Sérsic A, Marino S, Simões A, Cocucci AA (2011) Functional morphology and wasp pollination of two South American asclepiads (Asclepiadoideae–Apocynaceae). Ann Bot (Oxford) 109:77–93.  https://doi.org/10.1093/aob/mcr268 CrossRefGoogle Scholar
  73. Willson MF, Price PW (1980) Resource limitation of fruit and seed production in some Asclepias species. Canad J Bot 58:2229–2233.  https://doi.org/10.1139/b80-257 CrossRefGoogle Scholar
  74. Willson MF, Rathcke BJ (1974) Adaptive design of the floral display in Asclepias syriaca L. Amer Midl Naturalist 92:47–57.  https://doi.org/10.2307/2424201 CrossRefGoogle Scholar
  75. Wolff D, Meve U, Liede-Schumann S (2008) Pollination ecology of Ecuadorian Asclepiadoideae (Apocynaceae): How generalized are morphologically specialized flowers? Basic Appl Ecol 9:24–34.  https://doi.org/10.1016/j.baae.2007.06.013 CrossRefGoogle Scholar
  76. Wunnachit W, Jenner C, Sedgley M (1992) Floral and extrafloral nectar production in Anacardium occidentale L. (Anacardiaceae): an andromonoecious species. Int J Pl Sci 153:413–420CrossRefGoogle Scholar
  77. Yamashiro T, Maki M (2005) A comparative study of the reproductive character and genetic diversity of an autogamous Tylophora matsumurae and its progenitor Tylophora tanakae (Apocynaceae–Asclepiadoideae). Pl Syst Evol 256:55–67.  https://doi.org/10.1007/s00606-005-0360-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Arthur Domingos-Melo
    • 1
    Email author
  • Tarcila L. Nadia
    • 2
  • Ana P. Wiemer
    • 3
  • Andrea A. Cocucci
    • 3
  • Isabel C. Machado
    • 1
  1. 1.Departamento de Botânica, Laboratório de Biologia Floral e Reprodutiva Polinizar – Centro de BiociênciasUniversidade Federal de Pernambuco Recife BrazilRecifeBrazil
  2. 2.Núcleo de Biologia - Centro Acadêmico de VitóriaUniversidade Federal de PernambucoVitória de Santo AntãoBrazil
  3. 3.Instituto Multidisciplinario de Biología VegetalUniversidad Nacional de Córdoba, CONICET, FCEFyNCórdobaArgentina

Personalised recommendations