Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 1, pp 89–101 | Cite as

Low genetic differentiation between two morphologically and ecologically distinct giant-leaved Mexican oaks

  • Ana L. Albarrán-Lara
  • Remy J. Petit
  • Antoine Kremer
  • Henry Caron
  • Juan M. Peñaloza-Ramírez
  • Paul F. Gugger
  • Patricia D. Dávila-Aranda
  • Ken OyamaEmail author
Original Article

Abstract

Quercus magnoliifolia and Q. resinosa are two Mexican white oak species that have been taxonomically reported to exhibit morphological similarities and possible hybridization. The objective of this study was to compare the variation in Q. magnoliifolia and Q. resinosa throughout their distribution range to identify the degree of species differentiation using morphological, ecological and genetic tools. Morphological analysis showed differentiation in leaf shape between the species corresponding to the taxonomical identification of Q. magnoliifolia and Q. resinosa in almost all cases, but intermediate individuals were identified in the middle of the species ranges. Comparison of ecological niche models for Q. magnoliifolia and Q. resinosa showed non-equivalent ecological niches, high climatic niche differences and low to moderate spatial and environmental niche overlap, mainly along the Trans-Mexican Volcanic Belt where morphologically intermediate individuals between species were more frequently located, suggesting recent hybridization by secondary contact. In contrast, we found low but significant genetic differentiation between Q. magnoliifolia and Q. resinosa and lower interspecific than intraspecific genetic differentiation, and Bayesian clustering analysis (K = 2) failed to assign each species to a unique genotype, suggesting shared ancestral variation as the cause of genetic similarity between species due to recent divergence. In conclusion, although neutral molecular markers do not distinguish the species Q. magnoliifolia and Q. resinosa, we found morphological and ecological differentiation between these oaks that provide preliminary evidence for divergent selection.

Keywords

Ecological niche Interspecific gene flow Mexican oaks Quercus magnoliifolia Quercus resinosa Species differentiation 

Notes

Acknowledgements

We thank the constructive comments and suggestions of two anonymous reviewers to previous drafts. We also thank to V. Rocha, M.D. Lugo-Aquino, N. Pérez-Nasser, A. Palencia for technical assistance; A. Torres-Miranda for ecological niche modelling assistance; S. Valencia for taxonomical identification support; and J. Gonzaga-Espíritu for laboratory assistance.

Funding

This work was supported by the graduate programme Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and by CONACyT doctoral scholarship [188873] and UC MEXUS—CONACyT postdoctoral fellowship [I010/680/2012; I010/375/2013] to ALAL. This research was supported by DGAPA-PAPIIT (UNAM) [IN209108, IN229803, RV201015], SEMARNAT-CONACyT [2004-311, 2004-C01-97 and 2006-23728], CONACYT [240136] to KO, and by CONACyT-ECOS NORD [grant M03-A01] to AK and KO.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The authors comply with all rules of the journal following the COPE guidelines; all authors have contributed and approved the final manuscript.

Supplementary material

606_2018_1554_MOESM1_ESM.pdf (172 kb)
Supplementary material 1 (PDF 171 kb)
606_2018_1554_MOESM2_ESM.pdf (9 kb)
Supplementary material 2 (PDF 8 kb)
606_2018_1554_MOESM3_ESM.pdf (131 kb)
Supplementary material 3 (PDF 131 kb)
606_2018_1554_MOESM4_ESM.pdf (9 kb)
Supplementary material 4 (PDF 9 kb)
606_2018_1554_MOESM5_ESM.pdf (21 kb)
Supplementary material 5 (PDF 21 kb)
606_2018_1554_MOESM6_ESM.pdf (20 kb)
Supplementary material 6 (PDF 19 kb)
606_2018_1554_MOESM7_ESM.pdf (1 mb)
Supplementary material 7 (PDF 1064 kb)
606_2018_1554_MOESM8_ESM.pdf (41 kb)
Supplementary material 8 (PDF 40 kb)
606_2018_1554_MOESM9_ESM.pdf (46 kb)
Supplementary material 9 (PDF 46 kb)
606_2018_1554_MOESM10_ESM.pdf (204 kb)
Supplementary material 10 (PDF 204 kb)

References

  1. Abbott RJ (1992) Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends Ecol Evol 7:401–405.  https://doi.org/10.1016/0169-5347(92)90020-C CrossRefPubMedGoogle Scholar
  2. Albarrán-Lara AL, Mendoza-Cuenca L, Valencia-Avalos S, González-Rodríguez A, Oyama K (2010) Leaf fluctuating asymmetry increases with hybridization and introgression between Quercus magnoliifolia and Quercus resinosa (Fagaceae) through an altitudinal gradient in Mexico. Int J Pl Sci 171:310–322.  https://doi.org/10.1086/650317 CrossRefGoogle Scholar
  3. Aldrich PR, Michler CH, Sun W, Romero-Severson J (2002) Microsatellite markers for northern red oak (Fagaceae: Quercus rubra). Molec Ecol Notes 2:472–474.  https://doi.org/10.1046/j.1471-8278.2002.OM82x CrossRefGoogle Scholar
  4. Aldrich PR, Parker GR, Michler CH, Romero-Severson J (2003) Whole-tree silvic identifications and the microsatellite genetic structure of a red oak species complex in an Indiana old-growth forest. Canad J Forest Res 33:2228–2237.  https://doi.org/10.1139/X03-160 CrossRefGoogle Scholar
  5. Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species distributions: criteria for selecting optimal models. Ecol Model 162:211–232.  https://doi.org/10.1016/S0304-3800(02)00349-6 CrossRefGoogle Scholar
  6. Antonecchia G, Fortini P, Lepais O, Gerber S, Léger P, Scippa GS, Viscosi V (2015) Genetic structure of a natural oak community in central Italy: evidence of gene flow between three sympatric white oak species (Quercus, Fagaceae). Ann Forest Res 58:1512.  https://doi.org/10.15287/afr.2015.415 CrossRefGoogle Scholar
  7. Belkhir K, Borsa P, Chikhi L, Raufaste N, Binhomm F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier: Laboratoire Génome, Populations, interactions, CNRS UMR 5171, Université de Montpellier IIGoogle Scholar
  8. Bickford D, Lohman DJ, Sohdi NS, Ng PKI, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155.  https://doi.org/10.1016/j.tree.2006.11.004 CrossRefPubMedGoogle Scholar
  9. Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin M-J, Randin C, Zimmermann NE, Graham CH, Guisan A (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecol Biogeogr 21:481–497.  https://doi.org/10.1111/j.1466-8238.2011.00698.x CrossRefGoogle Scholar
  10. Bruschi P, Vendramin GG, Bussotti F, Grossoni P (2000) Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in Northern and Central Italy. Ann Bot (Oxford) 85:325–333.  https://doi.org/10.1006/anbo.1999.104 CrossRefGoogle Scholar
  11. Burger WC (1975) The species concept in Quercus. Taxon 24:45–50.  https://doi.org/10.2307/1218998 CrossRefGoogle Scholar
  12. Campana MG, Hunt HV, Jones H, White J (2011) CorrSieve: software for summarizing and evaluating structure output. Molec Ecol Res 11:349–352.  https://doi.org/10.1111/j.1755-0998.2010.02917.x CrossRefGoogle Scholar
  13. Chapman MA, Hiscock SJ, Filatov DA (2013) Genomic divergence during speciation driven by adaptation to altitude. Molec Biol Evol 30:2553–2567.  https://doi.org/10.1093/molbev/mst168 CrossRefPubMedGoogle Scholar
  14. Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package- I: one-table methods. R News 4:5–10Google Scholar
  15. Cooper EA, Whittall JB, Hodges SA, Nordborg M (2010) Genetic variation at nuclear loci fails to distinguish two morphologically distinct species of Aquilegia. PLoS ONE 5:e8655.  https://doi.org/10.1371/journal.pone.0008655 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Craft KJ, Ashley MV (2006) Population differentiation among three species of white oak in northeastern Illinois. Canad J Forest Res 36:206–215.  https://doi.org/10.1139/x05-234 CrossRefGoogle Scholar
  17. Curtu AL (2006) Patterns of genetic variation and hybridization in a mixed oak (Quercus spp.) forest. Cuvillier, GöttingenGoogle Scholar
  18. de la Torre AR, Roberts DR, Aitken SN (2014) Genome-wide admixture and ecological niche modelling reveal the maintenance of species boundaries despite long history of interspecific gene flow. Molec Ecol 23:2046–2059.  https://doi.org/10.1111/mec.12710 CrossRefGoogle Scholar
  19. Development Core Team R (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  20. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molec Ecol 14:2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  21. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molec Ecol Res 10:564–567.  https://doi.org/10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  22. Futuyma DJ (2005) Evolution. Sinauer, SunderlandGoogle Scholar
  23. González-Rodríguez A, Arias DM, Valencia S, Oyama K (2004) Morphological and RAPD analysis of hybridization between Quercus affinis and Quercus laurina (Fagaceae), two Mexican red oaks. Amer J Bot 91:401–409.  https://doi.org/10.3732/ajb.91.3.401 CrossRefGoogle Scholar
  24. González-Villarreal LM (1986) Contribuciones al conocimiento del género Quercus en el estado de Jalisco. Colección Flora de Jalisco, Instituto de Botánica, Universidad de Guadalajara, ZapopanGoogle Scholar
  25. Grant V (1981) Plant speciation. Columbia University Press, New YorkGoogle Scholar
  26. Guichoux E, Garnier-Géré P, Lagache L, Lang T, Boury C, Petit RJ (2013) Outlier loci highlight the direction of introgression in oaks. Molec Ecol 22:450–462.  https://doi.org/10.1111/mec.12125 CrossRefGoogle Scholar
  27. Hewitt GM (2002) Hybrid zones. In: Pagel M, Godfray C (eds) Encylopedia of evolution. Oxford University Press, New York, pp 552–556Google Scholar
  28. Hey J (2010) Isolation with migration models for more than two populations. Mol Biol Evol 27:905–920.  https://doi.org/10.1093/molbev/msp296 CrossRefPubMedGoogle Scholar
  29. Howard DJ, Preszler R, Williams J, Fenchel S, Boecklen WJ (1997) How discrete are oak species? insights from a hybrid zone between Quercus grisea and Quercus gambelii. Evolution 51:747–755.  https://doi.org/10.2307/2411151 CrossRefPubMedGoogle Scholar
  30. Jakob SS, Martínez-Meyer E, Blattner FR (2009) Phylogeographic analyses and paleodistribution modeling indicate Pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. Molec Biol Evol 26:907–923.  https://doi.org/10.1093/molbev/msp012 CrossRefPubMedGoogle Scholar
  31. Kampfer S, Lexer C, Glössl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186.  https://doi.org/10.1111/j.1601-5223.1998.00183.x CrossRefGoogle Scholar
  32. Kremer A, LeCorre V (2012) Decoupling of differentiation between traits and their underlying genes in response to divergent selection. Heredity 108:375–385.  https://doi.org/10.1038/hdy.2011.81 CrossRefPubMedGoogle Scholar
  33. Lefort F, Douglas GC (1999) An efficient micro-method of DNA isolation from mature leaves of four hardwood tree species Acer, Fraxinus, Prunus and Quercus. Ann Forest Sci 56:259–263.  https://doi.org/10.1051/forest:19990308 CrossRefGoogle Scholar
  34. McVaugh R (1974) Flora Novo-Galiciana. University of Michigan, MichiganGoogle Scholar
  35. Moran EV, John Willis, Clark JS (2012) Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Amer J Bot 99:92–100.  https://doi.org/10.3732/ajb.1100023 CrossRefGoogle Scholar
  36. Morán P, Marco-Rius F, Megías M, Covelo-Soto L, Pérez-Figueroa A (2013) Environmental induced methylation changes associated with seawater adaptation in brown trout. Aquaculture 92–395:77–83.  https://doi.org/10.1016/j.aquaculture.2013.02.006 CrossRefGoogle Scholar
  37. Muir G, Schlötterer C (2005) Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Molec Ecol 14:549–561.  https://doi.org/10.1111/j.1365-294X.2004.02418.x CrossRefGoogle Scholar
  38. Muller CH, McVaugh R (1972) The oaks (Quercus) described by Née (1801), and by Humboldt and Bonpland (1809), with comments on related species. Contr Univ Michigan Herb 9:507–522Google Scholar
  39. Neophytou C, Aravanopoulos FA, Fink S, Dounavi A (2010) Detecting interspecific and geographic differentiation patterns in two interfertile oak species (Quercus petraea (Matt.) Liebl. and Quercus robur L.) using small sets of microsatellite markers. Forest Ecol Managem 259:2026–2035.  https://doi.org/10.1016/j.foreco.2010.02.013 CrossRefGoogle Scholar
  40. Oksanen J, Kindt R, Legendre P et al (2009) Vegan: community ecology package. Available at https://cran.r-project.org, https://github.com/vegandevs/vegan
  41. Peñaloza-Ramírez JM, González-Rodríguez A, Mendoza-Cuenca L, Caron H, Kremer A, Oyama K (2010) Interespecific gene flow in a multispecies oak hybrid zone in the Sierra Tarahumara of Mexico. Ann Bot (Oxford) 105:389–399.  https://doi.org/10.1093/aob/mcp301 CrossRefGoogle Scholar
  42. Petit RJ (2004) Biological invasions at the gene level. Diversity Distrib 10:159–165.  https://doi.org/10.1111/j.1366-9516.2004.00084.x CrossRefGoogle Scholar
  43. Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164.  https://doi.org/10.1046/j.1469-8137.2003.00944.x CrossRefGoogle Scholar
  44. Phillips SJ, Dudik M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st international conference on machine learning. ACM Press, New York, pp 655–662Google Scholar
  45. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  46. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotypes data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  47. Rajora O, Dancik B (2000) Population genetic variation, structure, and evolution in Engelmann spruce, white spruce, and their natural hybrid complex in Alberta. Canad J Bot 78:768–780.  https://doi.org/10.1139/b00-054 CrossRefGoogle Scholar
  48. Rieseberg LH, Wood TE, Baack EJ (2006) The nature of plant species. Nature 440:524–527.  https://doi.org/10.1038/nature04402 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rohlf FJ (1990) Rotational fit (Procrustes) methods. In: Rohlf FJ, Bookstein F (eds) Proceedings of the Michigan morphometrics workshop. University of Michigan Museums of Zoology, Ann Arbor, pp 227–236Google Scholar
  50. Rohlf FJ (2005) tpsDig, digitize landmarks and outlines, version 2.04. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony BrookGoogle Scholar
  51. Rushton BS (1993) Natural hybridization within the genus Quercus L. Ann Sci Forest 50:73–90.  https://doi.org/10.1051/forest:19930707 CrossRefGoogle Scholar
  52. Rzedowski J (1978) Vegetación de México. Limusa, MéxicoGoogle Scholar
  53. Salvini D, Bruschi P, Fineschi S, Grossono P, Kjaer ED, Vendramin GG (2009) Natural hybridisation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. within an Italian stand as revealed by microsatellite fingerprinting. Pl Biol 11:758–765.  https://doi.org/10.1111/j.1438-8677.2008.00158.x CrossRefGoogle Scholar
  54. Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820.  https://doi.org/10.1038/nrg3522 CrossRefPubMedGoogle Scholar
  55. Steinkellner H, Fluch S, Turetschek E et al (1997) Identification and characterization of (GA/CT)n—microsatellite loci from Quercus petraea. Pl Molec Biol 33:1093–1096.  https://doi.org/10.1023/A:1005736722794 CrossRefGoogle Scholar
  56. Stockwell DRB, Noble IR (1992) Introduction of sets of rules from animal distribution data: a robust and informative method of analysis. Math Comput Simul 33:385–390.  https://doi.org/10.1016/0378-4754(92)90126-2 CrossRefGoogle Scholar
  57. Stockwell DRB, Peters DP (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Syst 13:143–158.  https://doi.org/10.1080/136588199241391 CrossRefGoogle Scholar
  58. Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504.  https://doi.org/10.1093/bioinformatics/btn478 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tovar-Sánchez E, Oyama K (2004) Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: morphological and molecular evidence. Amer J Bot 91:1352–1363.  https://doi.org/10.3732/ajb.91.9.1352 CrossRefGoogle Scholar
  60. Trelease W (1924) The American oaks. Natl Acad Sci 20:1–255Google Scholar
  61. Valencia S (1994) Contribución a la delimitación taxonómica de tres especies del género Quercus sub. Erytrobalanus. PhD Thesis, Universidad Nacional Autónoma de México, Ciudad de MéxicoGoogle Scholar
  62. Valencia S (2004) Diversidad del género Quercus en México. Bol Soc Bot Méx 75:33–53.  https://doi.org/10.17129/botsci.1692 CrossRefGoogle Scholar
  63. Van Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molec Ecol Notes 4:535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  64. Van Valen L (1976) Ecological species, multispecies and oaks. Taxon 25: 233–239. http://www.jstor.org/stable/1219444
  65. Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883.  https://doi.org/10.1111/j.1558-5646.2008.00482.x CrossRefPubMedGoogle Scholar
  66. Whittemore AT, Schaal BA (1991) Interspecific gene flow in sympatric oaks. Proc Nat Acad Sci USA 88:2540–2544.  https://doi.org/10.1073/pnas.88.6.2540 CrossRefPubMedGoogle Scholar
  67. Wood ET, Nakazato T (2009) Investigating species boundaries in the Giliopsis group of Ipomopsis (Polemoniaceae): strong discordance among molecular and morphological markers. Amer J Bot 96:853–861.  https://doi.org/10.3732/ajb.0800153 CrossRefGoogle Scholar
  68. Wu C-I (2001) The genic view of the process of speciation. J Evol Biol 14:851–865.  https://doi.org/10.1046/j.1420-9101.2001.00335.x CrossRefGoogle Scholar
  69. Wu C-I, Ting C-T (2004) Genes and speciation. Nat Rev Genet 5:114–122.  https://doi.org/10.1038/nrg1269 CrossRefPubMedGoogle Scholar
  70. Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists: a Primer. Elsevier, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Ana L. Albarrán-Lara
    • 1
  • Remy J. Petit
    • 2
    • 3
  • Antoine Kremer
    • 2
    • 3
  • Henry Caron
    • 2
    • 3
  • Juan M. Peñaloza-Ramírez
    • 4
  • Paul F. Gugger
    • 5
  • Patricia D. Dávila-Aranda
    • 6
  • Ken Oyama
    • 1
    Email author
  1. 1.Escuela Nacional de Estudios Superiores (ENES), Unidad Morelia (UNAM)MoreliaMexico
  2. 2.UMR1202 BiogecoINRACestasFrance
  3. 3.BIOGECO, UMR 1202Univ. BordeauxPessacFrance
  4. 4.Centro de Estudios de Desarrolló Sustentable y Aprovechamiento de la vida Silvestre, CEDESUUniversidad Autónoma de CampecheSan Francisco de CampecheMexico
  5. 5.Appalachian Laboratory, Center for Environmental ScienceUniversity of MarylandFrostburgUSA
  6. 6.Facultad de Estudios Superiores (FES) IztacalaTlalnepantlaMexico

Personalised recommendations