Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 1, pp 77–87 | Cite as

Phylogenetic placement of the Peruvian-endemic genus Machaerophorus (Brassicaceae) based on molecular data and implication for its systematics

  • Diego L. SalariatoEmail author
  • Marco A. Cueva Manchego
  • Asunción Cano
  • Ihsan A. Al-Shehbaz
Original Article

Abstract

The genus Machaerophorus includes three perennial species (M. arequipa, M. laticarpus, and M. matthioloides) inhabiting the southern Peruvian Andes. However, based on the morphological data, this genus has been reduced for more than one hundred years to synonymy of several genera of various tribes, and its phylogenetic placement using molecular data has never been studied. Therefore, in this study we explored the phylogenetic placement of Machaerophorus to test its generic status and tribal assignment, using for this purpose ribosomal nuclear (ITS) and chloroplast (trnL-F, trnH-psbA, rps16 intron) data together with a comprehensive sampling of taxa. Results obtained here demonstrated that Machaerophorus represents a well-differentiated lineage within the South American Cremolobeae–Eudemeae–Schizopetaleae clade, and hence, the genus is reinstated and excluded from the placements in Sibara and Mathewsia. Based on molecular data and morphological affinities, we included it within the tribe Schizopetaleae. A key to Machaerophorus and the genera of Schizopetaleae is also presented.

Keywords

Cruciferae Mathewsia Phylogeny Schizopetaleae Sibara Thelypodieae 

Notes

Acknowledgements

This project was funded by ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) Grant PICT-2013-1042 and CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) Grant PIP-112-201301-00124CO. Our deep gratitude goes to Dr. Fernando O. Zuloaga for his valuable support for this work and the study of South American Brassicaceae over the years. We especially appreciate the help of the editor-in-chief Martin A. Lysak and three anonymous reviewers who provided useful suggestions that improved an earlier version of this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

606_2018_1553_MOESM1_ESM.pdf (64 kb)
Supplementary material 1 (PDF 63 kb)
606_2018_1553_MOESM2_ESM.pdf (104 kb)
Supplementary material 2 (PDF 103 kb)
606_2018_1553_MOESM3_ESM.pdf (100 kb)
Supplementary material 3 (PDF 100 kb)
606_2018_1553_MOESM4_ESM.pdf (63 kb)
Supplementary material 4 (PDF 62 kb)
606_2018_1553_MOESM5_ESM.pdf (88 kb)
Supplementary material 5 (PDF 87 kb)
606_2018_1553_MOESM6_ESM.pdf (93 kb)
Supplementary material 6 (PDF 93 kb)
606_2018_1553_MOESM7_ESM.nex (104 kb)
Supplementary material 7 (NEX 103 kb)
606_2018_1553_MOESM8_ESM.nex (150 kb)
Supplementary material 8 (NEX 150 kb)
606_2018_1553_MOESM9_ESM.nex (47 kb)
Supplementary material 9 (NEX 47 kb)
606_2018_1553_MOESM10_ESM.nex (60 kb)
Supplementary material 10 (NEX 59 kb)
606_2018_1553_MOESM11_ESM.nex (34 kb)
Supplementary material 11 (NEX 33 kb)
606_2018_1553_MOESM12_ESM.nex (70 kb)
Supplementary material 12 (NEX 70 kb)

References

  1. Al-Shehbaz IA (1989) Systematics and phylogeny of Schizopetalon (Brassicaceae). Harvard Pap Bot 1:10–46Google Scholar
  2. Al-Shehbaz IA (2010) A synopsis of the genus Sibara (Brassicaceae). Harvard Pap Bot 15:139–147.  https://doi.org/10.3100/025.015.0107 CrossRefGoogle Scholar
  3. Al-Shehbaz IA (2012a) Machaerophorus is united with the genus Sibara (Brassicaceae). Harvard Pap Bot 17:1–2.  https://doi.org/10.3100/025.017.0101 CrossRefGoogle Scholar
  4. Al-Shehbaz IA (2012b) A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61:931–954Google Scholar
  5. Al-Shehbaz IA (2012c) Tribe Schizopetaleae. In: Anton MA, Zuloaga FO (eds) Brassicaceae, Flora Argentina, vol. 8. Editorial Sigma, Buenos Aires, pp 202–204Google Scholar
  6. Al-Shehbaz AI, Cano A, Cueva Machengo MA, Salariato DL (2018) Remarkable discoveries in the long-neglected and Peruvian-endemic genus Machaerophorus (Brassicaceae). Phytotaxa 360:114–124.  https://doi.org/10.11646/phytotaxa.360.2.3 CrossRefGoogle Scholar
  7. Ané C, Larget B, Baum DA, Smith SD, Rokas A (2007) Bayesian estimation of concordance among gene trees. Molec Biol Evol 24:412–426.  https://doi.org/10.1093/molbev/msl170 CrossRefPubMedGoogle Scholar
  8. Appel O, Al-Shehbaz IA (2003) Cruciferae. In: Kubitzki K, Bayer C (eds) The families and genera of vascular plants, vol. 5. Springer, Berlin, pp 75–174.  https://doi.org/10.1007/978-3-662-07255-4_17 CrossRefGoogle Scholar
  9. Baum DA (2007) Concordance trees, concordance factors, and the exploration of reticulate genealogy. Taxon 56:417–426Google Scholar
  10. Chen H, Deng T, Yue J, Al-Shehbaz IA, Sun H (2016) Molecular phylogeny reveals the non-monophyly of tribe Yinshanieae (Brassicaceae) and description of a new tribe, Hillielleae. Pl Diversity 38:171–182.  https://doi.org/10.1016/j.pld.2016.04.004 CrossRefGoogle Scholar
  11. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest2: more models, new heuristics and parallel computing. Nat Meth 9:772.  https://doi.org/10.1038/nmeth.2109 CrossRefGoogle Scholar
  12. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedGoogle Scholar
  13. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  14. Hayek A (1911) Entwurf eines Cruciferensystems auf phylogenetischer Grundlage. Beih Bot Centralbl 27:127–335Google Scholar
  15. Hooker JD (1862) Cruciferae. In: Bentham G, Hooker JD (eds) Genera plantarum, vol. 1. Reeve & Co, London, pp 57–102Google Scholar
  16. Khanna KR, Rollins RC (1965) A taxonomic revision of Cremolobus (Cruciferae). Contr Gray Herb 195:135–157Google Scholar
  17. Kiefer M, Schmickl R, German DA, Mandáková T, Lysak MA, Al- Shehbaz IA, Franzke A, Mummenhoff K, Stamatakis A, Koch MA (2014) BrassiBase: Introduction to a novel knowledge database on Brassicaceae evolution. Pl Cell Physiol 55:e3.  https://doi.org/10.1093/pcp/pct158 CrossRefGoogle Scholar
  18. Larget BR, Kotha SK, Dewey CN, Ané C (2010) BUCKy: gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics 26:2910–2911.  https://doi.org/10.1093/bioinformatics/btq539 CrossRefPubMedGoogle Scholar
  19. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway computing environments workshop (GCE). IEEE, New Orleans, pp. 1–8Google Scholar
  20. Müller K (1868) Annales botanices systematicae [Walpers], vol. 7. Sumptibus Friderici Hofmeister, LeipzigGoogle Scholar
  21. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938.  https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 CrossRefGoogle Scholar
  22. Prantl K (1891) Cruciferae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien III. Verlag von Wilhelm Engelmann, Leipzig, pp 145–206Google Scholar
  23. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904.  https://doi.org/10.1093/sysbio/syy032 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Rollins RC (1955) A revisionary study of the genus Menonvillea (Cruciferae). Contr Gray Herb 177:3–57Google Scholar
  25. Rollins RC (1966) The genus Mathewsia (Cruciferae). Acta Bot Neerl 15:102–116.  https://doi.org/10.1111/j.1438-8677.1966.tb00218.x CrossRefGoogle Scholar
  26. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542.  https://doi.org/10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Salariato DL, Al-Shehbaz IA (2014) Zuloagocardamum (Brassicaceae: Thelypodieae) a new genus of Brassicaceae from the Andes highlands of northern Argentina. Syst Bot 39:563–577.  https://doi.org/10.1600/036364418X697085 CrossRefGoogle Scholar
  28. Salariato DL, Zuloaga FO (2015) Taxonomic placement of Onuris hauthalii (Brassicaceae: Eudemeae), based on morphology and multilocus species tree analyses, and the recognition of the new genus Alshehbazia. Kew Bull 70:49.  https://doi.org/10.1007/s12225-015-9602-9 CrossRefGoogle Scholar
  29. Salariato DL, Zuloaga FO, Shehbaz IA (2013a) Molecular phylogeny of Menonvillea and recognition of the new genus Aimara (Brassicaceae: Cremolobeae). Taxon 62:1220–1234.  https://doi.org/10.12705/626.6 CrossRefGoogle Scholar
  30. Salariato DL, Zuloaga FO, Al-Shehbaz IA (2013b) Revision and tribal placement of the Argentinean genus Parodiodoxa (Brassicaceae). Pl Syst Evol 299:305–316.  https://doi.org/10.1007/s00606-012-0722-5 CrossRefGoogle Scholar
  31. Salariato DL, Zuloaga FO, Cano A, Al-Shehbaz IA (2015) Molecular phylogenetics of tribe Eudemeae (Brassicaceae) and implications for its morphology and distribution. Molec Phylogenet Evol 82:43–59.  https://doi.org/10.1016/j.ympev.2014.09.030 CrossRefPubMedGoogle Scholar
  32. Salariato DL, Zuloaga FO, Franzke A, Mummenhoff K, Al-Shehbaz IA (2016) Diversification patterns in the CES clade (Brassicaceae tribes Cremolobeae, Eudemeae, Schizopetaleae) in Andean South America. Bot J Linn Soc 181:543–566.  https://doi.org/10.1111/boj.12430 CrossRefGoogle Scholar
  33. Salariato DL, Al-Shehbaz IA, Zuloaga FO (2018) Reinstatement of the Southern Andean Genus Stenodraba (Brassicaceae) based on molecular data and insights from its environmental and geographic distribution. Syst Bot 43:35–52.  https://doi.org/10.1600/036364418X697085 CrossRefGoogle Scholar
  34. von Schlechtendal DFL (1857) Plantae Lechlerianae. Linnaea 28:463–542Google Scholar
  35. Schulz OE (1936) Cruciferae. In: Engler A, Harms H (eds) Die natürlichen Pflanzenfamilien, vol. 17B. Verlag von Wilhelm Englemann, Leipzig, pp 227–658Google Scholar
  36. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508.  https://doi.org/10.1080/10635150290069913 CrossRefPubMedGoogle Scholar
  37. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molec Biol Evol 16:1114–1116CrossRefGoogle Scholar
  38. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247.  https://doi.org/10.1093/bioinformatics/17.12.1246 CrossRefPubMedGoogle Scholar
  39. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.  https://doi.org/10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 57:758–771.  https://doi.org/10.1080/10635150802429642 CrossRefGoogle Scholar
  41. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), v. 4.0 beta 10. Sinauer Associates, SunderlandGoogle Scholar
  42. Thiers B (2017) [continuously updated]. Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at: http://sweetgum.nybg.org/ih. Accessed July 2018
  43. Toro-Núñez O, Mort ME, Ruiz-Ponce E, Al-Shehbaz IA (2013) Phylogenetic relationships of Mathewsia and Schizopetalon (Brassicaceae) inferred from nrDNA and cpDNA regions: taxonomic and evolutionary insights from an Atacama Desert endemic lineage. Taxon 62:343–356.  https://doi.org/10.12705/622.4 CrossRefGoogle Scholar
  44. Toro-Núñez O, Al-Shehbaz IA, Mort ME (2015) Phylogenetic study with nuclear and chloroplast data and ecological niche reveals Atacama (Brassicaceae), a new monotypic genus endemic from the Andes of the Atacama Desert, Chile. Pl Syst Evol 301:1377–1396.  https://doi.org/10.1007/s00606-014-1157-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Botánica Darwinion (CONICET-ANCEFN)San Isidro, Buenos AiresArgentina
  2. 2.Laboratorio de Florística, Departamento de Dicotiledóneas, Museo de Historia NaturalUniversidad Nacional Mayor de San Marcos (UNMSM)Lima 11Peru
  3. 3.Instituto de Investigación de Ciencias Biológicas Antonio Raimondi (ICBAR)Facultad de Ciencias Biológicas, (UNMSM)Lima 1Peru
  4. 4.Missouri Botanical GardenSt. LouisUSA

Personalised recommendations