Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 1, pp 1–11 | Cite as

Why polyploid exceptionalism is not accompanied by reduced extinction rates

  • Donald A. LevinEmail author
Invited Review

Abstract

In spite of their success during the past several millions of years, recent analyses indicate that polyploid species may have higher extinction rates than their diploid relatives. The idea that neopolyploid species are relatively short-lived is antithetical to the notion of polyploid exceptionalism. I propose that young, established polyploid species have unusually high extinction rates due to demographic and genetic challenges and that early demise accounts for the elevated extinction of polyploid species as a whole. Polyploid species are composed of conspecific lineages (each of an independent origin). Each origin is associated with a genetic and demographic bottleneck which reduces their abilities to cope with environment perturbations. The greater the number of independently originated lineages, the longer a polyploid species is likely to persist, given that the lineages are genetically/ecologically divergent. Autopolyploids appear to have much higher extinction rates than allopolyploids, even though the formation frequency in autopolyploids may be orders of magnitude greater. Niche differences between polyploids and their progenitors may be enhanced via the differential survival of the most divergent polyploids relative to their progenitors. It seems to be the rarely successful polyploid that flourishes during times of environmental alteration and that leaves an enduring genomic legacy.

Keywords

Extinction Genetic variation Independent origins Isolate selection Neopolyploids Polyploidy 

Notes

Acknowledgements

The author is grateful to Christian Parisod, Doug Soltis and Jeff Doyle and to two anonymous reviewers for their thoughtful comments on this manuscript.

Compliance with ethical standards

Human and animal rights

No humans or animals were involved in the study, which is based only on the literature.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abbott RJ, Ireland HE, Rogers HJ (2007) Population decline despite high genetic diversity in the new allopolyploid species Senecio cambrensis (Asteraceae). Molec Ecol 16:1023–1033.  https://doi.org/10.1111/j.1365-294X.2007.03169.x CrossRefGoogle Scholar
  2. Abbott RJ et al (2013) Hybrid speciation. J Evol Biol 26:229–246CrossRefGoogle Scholar
  3. Alexander HK, Lambert A, Stadler T (2016) Quantifying age-dependent extinction from species phylogenies. Syst Biol 65:35–50.  https://doi.org/10.1093/sysbio/syv065 CrossRefPubMedGoogle Scholar
  4. Allmon WD (1992) A causal analysis of stages in allopatric speciation. In: Futuyma D, Antonovics J (eds) Oxford surveys in evolutionary biology, vol. 8. Oxford University Press, Oxford, pp 219–257Google Scholar
  5. Araujo MB, New M (2007) Ensemble forecasting of species distributions. Trend Ecol Evol 22:42–47.  https://doi.org/10.1016/j.tree.2006.09.010 CrossRefGoogle Scholar
  6. Armbruster P, Reed DH (2005) Inbreeding depression in benign and stressful environments. Heredity 95:235–242.  https://doi.org/10.1038/sj.hdy.6800721 CrossRefPubMedGoogle Scholar
  7. Arnold B, Kim ST, Bomblies K (2015) Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by inter-ploidy admixture. Molec Biol Evol 32:1382–1395CrossRefGoogle Scholar
  8. Arrigo N, Barker MS (2012) Rarely successful polyploids and their legacy in plant genomes. Curr Opin Pl Biol 15:140–146.  https://doi.org/10.1016/j.pbi.2012.03.010 CrossRefGoogle Scholar
  9. Arrigo N, de La Harpe M, Litsios G, Zozomová-Lihová J, Španiel S, Marhold K, Barker MS, Alvarez N (2016) Is hybridization driving the evolution of climatic niche in Alyssum montanum? Amer J Bot 103:1348–1357CrossRefGoogle Scholar
  10. Balao F, Tannhäuser M, Lorenzo MT, Hedrén M, Paun O (2016) Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex. Heredity 116:351–361CrossRefGoogle Scholar
  11. Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA (2016) On the relative abundance of autopolyploids and allopolyploids. New Phytol 210:391–398.  https://doi.org/10.1111/nph.15411
  12. Barrett SCH, Husband BC (1990) The genetics of plant migration and colonization. In: Brown AHD, Clegg MT, Kahler AL (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, pp 254–277Google Scholar
  13. Barrett RD, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evo 23:38–44.  https://doi.org/10.1016/j.tree.2007.09.008 CrossRefGoogle Scholar
  14. Behm JE, Ives AR, Boughman JW (2010) Breakdown in postmating isolation and the collapse of a species pair through hybridization. Amer Nat 17:11–26.  https://doi.org/10.1086/648559 CrossRefGoogle Scholar
  15. Beierkuhnlein C, Jentsch A, Thiel D, Willner E, Kreyling J (2011) Ecotypes of European grass species respond specifically to warming and extreme drought. Ecol 99:703–713.  https://doi.org/10.1111/j.1365-2745.2011.01809.x CrossRefGoogle Scholar
  16. Bibby CJ (1994) Recent, past and future extinctions in birds. Phil Trans Roy Soc London B 344:35–40.  https://doi.org/10.1098/rstb.1994.0048 CrossRefGoogle Scholar
  17. Birand A, Vose A, Gavrilet S (2012) Patterns of species ranges, speciation and extinction. Amer Naturalist 179:1–21.  https://doi.org/10.1086/663202 CrossRefGoogle Scholar
  18. Bradshaw AD (1991) Genostasis and the limits to evolution. Phil Trans Roy Soc London B 333:289–305.  https://doi.org/10.1098/rstb.1991.0079 CrossRefPubMedGoogle Scholar
  19. Brochmann C, Soltis PS, Soltis DE (1992) Recurrent formation and polyphyly of Nordic polyploids in Draba (Brassicaceae). Amer J Bot 79:673–688CrossRefGoogle Scholar
  20. Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen A-C et al (2004) Polyploidy in arctic plants. Biol J Linn Soc 82:521–536.  https://doi.org/10.1111/j.1095-8312.2004.00337.x
  21. Burbidge AA, McKenzie NL (1989) Patterns in the modern decline of Western Australia’s vertebrate fauna: causes and conservation implications. Biol Conservation 50:143–198.  https://doi.org/10.1016/0006-3207(89)90009-8 CrossRefGoogle Scholar
  22. Channell R, Lomolino MV (2000a) Trajectories to extinction: spatial dynamics of the contraction of species ranges. J Biogeogr 27:169–179.  https://doi.org/10.1046/j.1365-2699.2000.00382.x CrossRefGoogle Scholar
  23. Channell R, Lomolino MV (2000b) Dynamic biogeography and conservation of endangered species. Nature 403:84–86.  https://doi.org/10.1038/47487 CrossRefPubMedGoogle Scholar
  24. Chester M, Gallagher JP, Symonds VV, Cruz Veruska, da Silva A, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE (2012) Extensive chromosomal variation generated in a recently formed polyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci USA 109:1176–1181.  https://doi.org/10.1073/pnas.1112041109 CrossRefPubMedGoogle Scholar
  25. Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 2010:8.  https://doi.org/10.1371/journal.pbio.1000357 CrossRefGoogle Scholar
  26. Clark JW, Donoghue PCJ (2018) Whole-genome duplication and plant macroevolution. Trend Pl Sci 23:933–945CrossRefGoogle Scholar
  27. Clarkson JJ, Dodsworth S, Chase MW (2017) Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Pl Syst Evol 303:1001–1012.  https://doi.org/10.1007/s006 CrossRefGoogle Scholar
  28. Cohen KM, Gibbard P (2012) Global chronostratigraphical correlation table for the last 2.7 million years. Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy), Cambridge, EnglandGoogle Scholar
  29. Colautti RI, Alexander JM, Dlugosch KM, Keller SR, Sultan SE (2017) Invasions and extinctions through the looking glass of evolutionary ecology. Phil Trans Roy Soc London B 372:20160031.  https://doi.org/10.1098/rstb.2016.003 CrossRefPubMedGoogle Scholar
  30. Congreve CR, Falk AR, Lamsdell JC (2017) Biological hierarchies and the nature of extinction. Biol Rev 93:811–826.  https://doi.org/10.1111/brv.12368 CrossRefPubMedGoogle Scholar
  31. Crawford DJ, Ornduff R, Vasey MC (1985) Allozyme variation within and between Lasthenia minor and its derivative species L. maritima (Asteraceae). Amer J Bot 72:1177–1184.  https://doi.org/10.1002/j.1537-2197.1985.tb08370.x
  32. Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270.  https://doi.org/10.1038/sj.hdy.6885530
  33. Cutter A, Gray JC (2016) Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution 70:2171–2185.  https://doi.org/10.1111/evo.13030 CrossRefPubMedGoogle Scholar
  34. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292:673–679.  https://doi.org/10.1126/science.292.5517.673 CrossRefPubMedGoogle Scholar
  35. Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to changing climate. Ecology 86:1704–1714.  https://doi.org/10.1890/03-0788 CrossRefGoogle Scholar
  36. De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2015) Estimating the normal background rate of species extinction. Conservation Biol 29:452–462.  https://doi.org/10.1111/cobi.12380 CrossRefGoogle Scholar
  37. Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS et al (2008) Evolutionary genetics of genome merger and doubling in plants. Annual Rev Genet 42:443–461.  https://doi.org/10.1146/annurev.genet.42.110807.091524 CrossRefGoogle Scholar
  38. Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866.  https://doi.org/10.1126/science.1143986 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Rev Ecol Syst 24:217–242.  https://doi.org/10.1146/annurev.es.24.110193.001245
  40. Fagan WF, Holmes EE (2006) Quantifying the extinction vortex. Ecol Lett 9:51–60.  https://doi.org/10.1111/j.1461-0248.2005.00845.x CrossRefPubMedGoogle Scholar
  41. Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci USA 106:5737–5742.  https://doi.org/10.1073/pnas.0900906106 CrossRefPubMedGoogle Scholar
  42. Frankham R (2005) Genetics and extinction. Biol Conservation 126:131–140.  https://doi.org/10.1016/j.biocon.2005.05.002 CrossRefGoogle Scholar
  43. Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molec Ecol 24:2610–2618.  https://doi.org/10.1111/mec.13139 CrossRefGoogle Scholar
  44. Franks SJ, Weber JJ, Aitken SN (2014) Evolutionary and plastic responses to climate change in terrestrial plant populations. Ecol Appl 7:123–139.  https://doi.org/10.1111/eva.12112 CrossRefGoogle Scholar
  45. Futuyma DJ (1987) On the role of species in anagenesis. Amer Naturalist. 130:465–473.  https://doi.org/10.1086/284724 CrossRefGoogle Scholar
  46. Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range. Proc Natl Acad Sci USA 99:11256–11259.  https://doi.org/10.1073/pnas.132403299 CrossRefPubMedGoogle Scholar
  47. Gaston KJ (1994) Rarity. Chapman and Hall, New YorkCrossRefGoogle Scholar
  48. Gaston KJ (1998) Species-range size distributions: products of speciation, extinction and transformation. Phil Trans Roy Soc London B 353:219–230.  https://doi.org/10.1098/rstb.1998.020 CrossRefGoogle Scholar
  49. Gaston KJ, Fuller RA (2009) The sizes of species’ geographic ranges. J Appl Ecol 46:1–9.  https://doi.org/10.1111/j.1365-2664.2008.01596.x CrossRefGoogle Scholar
  50. Gaynor ML, Ng J, Laport RG (2018) Phylogenetic structure of plant communities: are polyploids distantly related to co-occurring diploids? Frontiers Ecol Evol 6:1–14.  https://doi.org/10.3389/fevo.2018.00052 CrossRefGoogle Scholar
  51. Gilpin ME, Soulé ME (1986) Minimum viable populations: processes of extinction. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 19–34Google Scholar
  52. Gomulkiewicz R, Holt RD (1995) When does evolution by natural-selection prevent extinction. Evolution 49:201–207CrossRefGoogle Scholar
  53. González-Suárez M, Revilla E (2013) Variability in life-history and ecological traits is a buffer against extinction in mammals. Ecol Lett 16:242–251.  https://doi.org/10.1111/ele.12035
  54. Gottlieb LD, Warwick SI, Ford VS (1985) Morphological and electrophoretic divergence between Layia discoidea and L. glandulosa. Syst Bot 10:484–495CrossRefGoogle Scholar
  55. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186.  https://doi.org/10.1016/S0304-3800(00)00354-9
  56. Hagen O, Andermann T, Quental TB, Antonelli A, Silvestro D (2017) Estimating age-dependent extinction: contrasting evidence from fossils and phylogenies. Syst Biol.  https://doi.org/10.1093/sysbio/syx082 CrossRefPubMedCentralGoogle Scholar
  57. Hampe A, Petit RJ (2005) Conserving biodiversity under climatic change: the rear edge matter. Ecol Lett 8:461–467.  https://doi.org/10.1111/j.1461-0248.2005.00739.x CrossRefPubMedGoogle Scholar
  58. Han T-S et al (2015) Frequent introgressions from diploid species contribute to the adaptation of the tetraploid Shepherd’s Purse (Capsella bursa-pastoris). Molec Pl 8:427–438CrossRefGoogle Scholar
  59. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49.  https://doi.org/10.1038/23876 CrossRefGoogle Scholar
  60. Hanzl M, Kolar F, Novakova D, Suda J (2014) Nonadaptive processes governing early stages of polyploid evolution: insights from a primary contact zone of relict serpentine Knautia arvensis (Caprifoliaceae). Amer J Bot 101:935–945CrossRefGoogle Scholar
  61. Hawkins SB, Rueda M, Rangel TF, Fiedld R, Diniz-Filho JAF (2014) Community phylogenetics at the biogeographical scale: cold tolerance, niche conservation and the structure of North American forests. J Biogeogr 41:23–38CrossRefGoogle Scholar
  62. Hersch-Green E (2012) Polyploidy in indian paintbrush (Castilleja, Orobanchaceae) species shapes but does not prevent gene flow across species boundaries. Amer J Bot 99:1680–1690CrossRefGoogle Scholar
  63. Hershkovitz MA, Arroyo MTK, Bell C, Hinojosa LF (2006) Phylogeny of Chaetanthera (Asteraceae: Mutisieae) reveals both ancient and recent origins of the high elevation lineages. Molec Phylogenet Evol 41:594–605.  https://doi.org/10.1016/j.ympev.2006.05.003 CrossRefPubMedGoogle Scholar
  64. Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913.  https://doi.org/10.1038/35016000 CrossRefPubMedGoogle Scholar
  65. Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Phil Trans Roy Soc London B 359:183–195.  https://doi.org/10.1098/rstb.2003.138 CrossRefPubMedGoogle Scholar
  66. Hewitt GM (2011) Quaternary phylogeography: the roots to hybrid zones. Genetica 139:617–638.  https://doi.org/10.1007/s10709-011-9547-3 CrossRefPubMedGoogle Scholar
  67. Higgins K, Lynch M (2001) Metapopulation extinction caused by mutation accumulation. Proc Natl Acad Sci USA 98:2928–2933.  https://doi.org/10.1073/pnas.031358898 CrossRefPubMedGoogle Scholar
  68. Hulber K, Sonnleitner M, Suda J, Krejcıkova J, Schonswetter P, Schneeweiss GM, Winkler M (2015) Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between polyploids in narrow contact zones of Senecio carniolicus syn. Jacobaea carniolica, Asteraceae. Ecol Evol 56:1224–1234CrossRefGoogle Scholar
  69. Husband BC, Schemske DW (1997) The effect of inbreeding in diploid and tetraploid populations of Epilobium angustifolium (Onagraceae): implications for the genetic basis of inbreeding depression. Evolution 51:737–746CrossRefGoogle Scholar
  70. Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26:194–220CrossRefGoogle Scholar
  71. Jackson S, Chen ZJ (2010) Genomic and expression plasticity of polyploidy. Curr Opin Pl Biol 13:153–159Google Scholar
  72. Kallimanis AS, Kunin WE, Halley JM, Sgardelis SP (2005) Metapopulation extinction risk under spatially autocorrelated disturbance. Conservation Biol 19:534–546.  https://doi.org/10.1111/j.1523-1739.2005.00418.x CrossRefGoogle Scholar
  73. Karunarathne P, Schedler M, Martínez EJ, Honfi AI, Novichkova A, Hojsgaard D (2018) Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids. Ann Bot (Oxford) 121:1183–1196.  https://doi.org/10.1093/aob/mcy004 CrossRefGoogle Scholar
  74. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trend Ecol Evol 17:230–241.  https://doi.org/10.1016/S0169-5347(02)02489-8 CrossRefGoogle Scholar
  75. Kolbe SE, Lockwood R, Hunt G (2011) Does morphological variation buffer against extinction? a test using veneroid bivalves from the Plio-Pleistocene of Florida. Paleobiology 37:355–368.  https://doi.org/10.1666/09073.1 CrossRefGoogle Scholar
  76. Kreyling J, Thiel D, Nagy L, Entsch A, Huber G, Konnert M, Beierkuhnlein C (2011) Late frost sensitivity of juvenile Fagus sylvatica L. differs between southern Germany and Bulgaria and depends on preceding air temperatures. Eur J Forest Res 131:717–725.  https://doi.org/10.1007/s10342-011-0544-y CrossRefGoogle Scholar
  77. Lamsdell JC, Congreve CR, Hopkins MJ, Krug AZ, Patzkowsky ME (2017) Phylogenetic paleoecology: tree-thinking and ecology in deep time. Trends Ecol Evol 32:452–463.  https://doi.org/10.1016/j.tree.2017.03.002 CrossRefPubMedGoogle Scholar
  78. Lande R (1992) Neutral theory of quantitative genetic variance in an island model with local extinction and colonization. Evolution 46:381–389.  https://doi.org/10.1111/j.1558-5646.1992.tb02046.x CrossRefPubMedGoogle Scholar
  79. Layman NC, Busch JW (2018) Bottlenecks and inbreeding depression in autotetraploids. Evolution.  https://doi.org/10.1111/evo.13587 CrossRefPubMedGoogle Scholar
  80. Levin DA (2000) The origin, expansion and demise of plant species. Oxford University Press, New YorkGoogle Scholar
  81. Levin DA (2002) The role of chromosomal change in the evolution of plants. Oxford University Press, New YorkGoogle Scholar
  82. Levin DA (2012) The long wait for hybrid sterility in flowering plants. New Phytol 196:666–670CrossRefGoogle Scholar
  83. Levin DA (2013) The timetable for allopolyploidy in flowering plants. Ann Bot (Oxford) 112:1201–1208.  https://doi.org/10.1093/aob/mct194 CrossRefGoogle Scholar
  84. Levin DA, Scarpino SV (2016) On the young age of intraspecific herbaceous taxa. New Phytol 213:1513–1520.  https://doi.org/10.1111/nph.14224 CrossRefPubMedGoogle Scholar
  85. Levin DA, Soltis DE (2018) Factors promoting polyploid persistence and diversification and limiting diploid speciation during the K–Pg interlude. Curr Opin Pl Biol 42:1–7.  https://doi.org/10.1016/j.pbi.2017.09.010 CrossRefGoogle Scholar
  86. Lewis H (1973) The origin of diploid neospecies in Clarkia. Amer Nat 107:161–170.  https://doi.org/10.1016/j.pbi.2009.11.004
  87. Macnair MR, Macnair VE, Martin BE (1989) Adaptive speciation in Mimulus: an ecological comparison with its presumed ancestor of M. cupriphilus with its presumed ancestor, M. guttatus. Genetics 122:211–222.  https://doi.org/10.1111/j.1469-8137.1989.tb02383.x
  88. Marchant DB, DE Soltis, Soltis PS (2016) Patterns of abiotic niche shifts in allopolyploids relative to their progenitors. New Phytol 212:708–718.  https://doi.org/10.1111/nph.14069 CrossRefGoogle Scholar
  89. Marchini GL, Sherlock NC, Ramakrishnan AP, Rosenthal DM, Cruzan MB (2016) Rapid purging of genetic load in a metapopulation and consequences for range expansion in an invasive plant. Biol Invasions 18:183–196.  https://doi.org/10.1007/s10530-015-1001-5 CrossRefGoogle Scholar
  90. Maurer BA, Nott MP (1998) In: McKinney ML, Drake JA (eds) Biodiversity dynamics. Columbia University Press, New York, pp 31–50Google Scholar
  91. Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science 333:125.  https://doi.org/10.1126/science.1207205 CrossRefGoogle Scholar
  92. Mayrose I, Zhan SH, Rothfels CJ, Arrigo N, Barker, Rieseberg LH, Otto SP (2015) Methods for studying polyploid diversification and the dead end hypothesis: a reply to Soltis et al. (2014). New Phytol 206:27–35.  https://doi.org/10.1111/nph.13192 CrossRefPubMedGoogle Scholar
  93. McCauley DE (1993) Genetic consequences of extinction and recolonization in fragmented habitats. In: Kareiva PM, Kingsolver JG, Huey RB (eds) Biotic interactions and global change. Sinauer, Sunderland, pp 217–233Google Scholar
  94. Milne RI, Abbott RJ (2000) Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Molec Ecol 9:541–546.  https://doi.org/10.1046/j.1365-294x.2000.00906.x CrossRefGoogle Scholar
  95. Modliszewski JL, Willis JH (2012) Allotetraploid Mimulus sookensis are highly interfertile despite independent origins. Molec Ecol 21:5280–5298CrossRefGoogle Scholar
  96. Morales-Barbero J, Martinez PA, Ferrer-Castán D, Olalla-Tárraga MÁ (2017) Quaternary refugia are associated with higher speciation rates in mammalian faunas of the Western Palaearctic. Ecogeogrphy 40:001–014.  https://doi.org/10.1111/ecog.02647 CrossRefGoogle Scholar
  97. Morin X, Lechowicz MJ (2013) Niche breadth and range area in North American trees. Ecogeography 36:300–312.  https://doi.org/10.1111/j.1600-0587.2012.07340.x CrossRefGoogle Scholar
  98. Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline. Science 341:504–508.  https://doi.org/10.1126/science.1237190 CrossRefPubMedGoogle Scholar
  99. Morjan CL, Rieseberg LH (2004) How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles. Molec Ecol 13:1341–1356.  https://doi.org/10.1111/j.1365-294X.2004.02164.x CrossRefGoogle Scholar
  100. Novak SJ, Mack RN (1993) Genetic variation in Bromus tectorum (Poaceae): comparison between native and introduced populations. Heredity 71:167–176.  https://doi.org/10.1038/hdy.1993.121 CrossRefGoogle Scholar
  101. Nussey DH, Postma E, Gienapp P, Visser ME (2005) Selection on heritable phenotypic plasticity in a wild bird population. Science 310:304–306.  https://doi.org/10.1126/science.1117004 CrossRefPubMedGoogle Scholar
  102. Oberlander KC, Dreyer LL, Goldblatt P, Suda J, Linder HP (2016) Species-rich and polyploid-poor: insights into the evolutionary role of whole-genome duplication from the Cape flora biodiversity hotspot. Amer J Bot 103:1336–1347.  https://doi.org/10.3732/ajb.1500474 CrossRefGoogle Scholar
  103. Oney B, Reineking B, O’Neill G, Kreyling J (2013) Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol Evol 3:437–449.  https://doi.org/10.1002/ece3.426 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462CrossRefGoogle Scholar
  105. Ovaskainen O, Hanski I (2003) Extinction threshold in metapopulation models. Ann Zool Fenn 40:81–97Google Scholar
  106. Ownbey M, McCollum GD (1953) Cytoplasmic inheritance and reciprocal amphiploidy in Tragopogon. Amer J Bot 40:788–796.  https://doi.org/10.1002/j.1537-2197.1953.tb06556.x
  107. Pandit MK, White SM, Pocock MJO (2014) The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol 203:697–703.  https://doi.org/10.1111/nph.12799 CrossRefPubMedGoogle Scholar
  108. Parisod C, Broennimann O (2016) Towards unified hypotheses of the impact of polyploidy on ecological niches. New Phytol 212:540–542.  https://doi.org/10.1111/nph.14133 CrossRefPubMedGoogle Scholar
  109. Parisod C, Holdregger CR, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17.  https://doi.org/10.1111/j.1469-8137.2009.03142.x CrossRefPubMedGoogle Scholar
  110. Pearman PB, D’Amen M, Graham CH, Thuiller W, Zimmermann NE (2010) Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecogeography 33:990–1003.  https://doi.org/10.1111/j.1600-0587.2010.06443.x CrossRefGoogle Scholar
  111. Petit C, Bretagnolle F, Felber F (1999) Evolutionary consequences of diploid–polyploid hybrid zones in wild species. Trend Ecol Evol 14:306–311CrossRefGoogle Scholar
  112. Phillimore AB, Orme CDL, Davies RG, Hadfield JD, Reed WJ, Gaston KJ, Freckleton RP, Owens IPF (2007) Biogeographical basis of recent phenotypic divergence among birds: a global study of subspecies richness. Evolution 61:942–957.  https://doi.org/10.1111/j.1558-5646.2007.00068.x CrossRefPubMedGoogle Scholar
  113. Pimm SL, Joppa LN (2015) How many plant species are there, where are they, and at what rate are they going extinct? Ann Missouri Bot Gard 100:170–176.  https://doi.org/10.3417/2012018 CrossRefGoogle Scholar
  114. Pimm SL, Jenkins CN, Abell R, Brooks SP, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:988.  https://doi.org/10.1126/science.1246752 CrossRefGoogle Scholar
  115. Pio DV, Engler R, Linder HP, Monadjem A, Cotterill FPD, Taylor PJ et al (2014) Climate change effects on animal and plant phylogenetic diversity in southern Africa. Glob Change Biol 20:1538–1549.  https://doi.org/10.1111/gcb.12524 CrossRefGoogle Scholar
  116. Prinzing A, Durka W, Klotz S, Brandl D (2001) The niche of higher plants: evidence of phylogenetic conservatism. Proc Biol Soc 268:2383–2389.  https://doi.org/10.1098/rspb.2001.1801
  117. Pujol B, Zhou S-R, Vilas JS et al (2009) Reduced inbreeding depression after species range expansion. Proc Natl Acad Sci USA 106:15379–15383.  https://doi.org/10.1073/pnas.0902257106 CrossRefPubMedGoogle Scholar
  118. Purvis A (2008) Phylogenetic approaches to the study of extinction. Annual Rev Ecol Evol Syst 39:301–319.  https://doi.org/10.1146/annurev-ecolsys-063008-102010 CrossRefGoogle Scholar
  119. Ramsey JR, Schemske DW (2002) Neopolyploidy in flowering plants. Annual Rev Ecol Syst 33:589–639.  https://doi.org/10.1146/annurev.ecolsys.33.010802.150437 CrossRefGoogle Scholar
  120. Raven PH, Gregory D (1972) A revision of the genus Gaura. Mem Torrey Bot Club 23:1–96Google Scholar
  121. Richards CM (2000) Inbreeding depression and genetic rescue in a plant metapopulation. Amer Naturalist 155:383–394.  https://doi.org/10.1086/303324 CrossRefGoogle Scholar
  122. Richmond JQ, Jockusch EL (2007) Body size evolution simultaneously creates and collapses species boundaries in a clade of scincid lizards. Proc Roy Soc B 274:1701–1708.  https://doi.org/10.1098/rspb.2007.0364 CrossRefGoogle Scholar
  123. Rieseberg LH (1997) Hybrid origins of plant species. Annual Rev Ecol Syst 28:359–389.  https://doi.org/10.1146/annurev.ecolsys.28.1.359 CrossRefGoogle Scholar
  124. Rieseberg LH, Burke JM (2001) The biological reality of species: gene flow, selection and collective evolution. Taxon 50:47–67CrossRefGoogle Scholar
  125. Rissler LJ, Hijmans RJ, Graham CH, Moritz C, Wake DB (2006) Phylogeographic lineages and species comparisons in conservation analyses: a case study of California herpetofauna. Amer Nat 167:655–666.  https://doi.org/10.1086/503332
  126. Rosenblum EB et al (2012) Goldilocks meets Santa Rosalia: an ephemeral speciation model explains patterns of diversification across time scales. Evol Biol 39:255–261.  https://doi.org/10.1007/s11692-012-9171-x CrossRefPubMedPubMedCentralGoogle Scholar
  127. Saupe EE, Qiao H, Hendricks JR, Portell RW, Hunter SJ, Soberón J, Lieberman BS (2015) Niche breadth and geographic range size as determinants of species survival on geological time scales. Glob Ecol Biogeogr 24:1159–1169.  https://doi.org/10.1111/geb.12333 CrossRefGoogle Scholar
  128. Schranz ME, Mohammadin S, Edger PP (2012) Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model. Curr Opin Pl Biol 15:147–153.  https://doi.org/10.1016/j.pbi.2012.03.011 CrossRefGoogle Scholar
  129. Seehausen O (2006) African cichlid fish: a model system in adaptive radiation research. Proc Roy Soc London B 273:1987–1998.  https://doi.org/10.1098/rspb.2006.3539 CrossRefGoogle Scholar
  130. Segraves KA, Anneberg TJ (2016) Species interactions and plant polyploidy. Amer J Bot 103:1326–1335.  https://doi.org/10.3732/ajb.1500529 CrossRefGoogle Scholar
  131. Skelly DK, Joseph LN, Possingham HP, Freidenburg LK, Farrugia TJ, Kinnison MT, Hendry AP (2007) Evolutionary responses to climate change. Conservation Biol 21:1353–1355.  https://doi.org/10.1111/j.1523-1739.2007.00764.x CrossRefGoogle Scholar
  132. Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Populat Biol 12:253–262.  https://doi.org/10.1016/0040-5809(77)90045-4 CrossRefGoogle Scholar
  133. Slayter RA, Hirst M, Sexton JP (2013) Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett 16:1104–1114.  https://doi.org/10.1111/ele.12140 CrossRefGoogle Scholar
  134. Soltis DE, Burleigh JG (2009) Surviving the K–T mass extinction: new perspectives of polyploidization in angiosperms. Proc Natl Acad Sci USA 106:5455–5456.  https://doi.org/10.1073/pnas.0901994106 CrossRefPubMedGoogle Scholar
  135. Soltis DE et al (2007) Autopolyploidy in angiosperms: have we grossly underextimated the number of species? Taxon 56:13–30Google Scholar
  136. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH et al (2009) Polyploidy and angiosperm diversification. Amer J Bot 96:336–348.  https://doi.org/10.3732/ajb.0800079 CrossRefGoogle Scholar
  137. Soltis DE, Visger CJ, Soltis PE (2014a) The polyploidy revolution then…and now: stebbins revisited. Amer J Bot 101:1057–1078.  https://doi.org/10.3732/ajb.1400178 CrossRefGoogle Scholar
  138. Soltis DE et al (2014b) Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytol 202:1105–1117.  https://doi.org/10.1111/nph.12756 CrossRefPubMedGoogle Scholar
  139. Soltis PS, Liu X, Marchant DB, VIsger CJ, Soltis DE (2014c) Polyploidy and novelty: Gottlieb’s legacy. Phil Trans Roy Soc London B 369:1648.  https://doi.org/10.1098/rstb.2013.0351 CrossRefGoogle Scholar
  140. Sonnleitner M, Weis B, Flatscher R, Garcıa PE, Suda J, Krejcıkova J, Schneeweiss GM, Winkler M, Schonswetter P, Hulber K (2013) Parental ploidy strongly affects offspring fitness in heteroploid crosses among three cytotypes of autopolyploid Jacobaea carniolica (Asteraceae). PLoS One 8:e78959.  https://doi.org/10.1371/journal.pone.0078959
  141. Sonnleitner M, Hulber K, Flatscher R, Garca PE, Winkler M, Suda J, Schonswetter P, Schneeweis GM (2016) Ecological differentiation of diploid and polyploid cytotypes of Senecio carniolicus sensu lato (Asteraceae) is stronger in areas of sympatry. Ann Bot (Oxford) 117:269–276Google Scholar
  142. Spoelhof JP, Soltis PS, Soltis DE (2017) Pure polyploidy: closing the gaps in autopolyploid research. J Syst Evol 55:340–352.  https://doi.org/10.1111/jse.12253 CrossRefGoogle Scholar
  143. Stanley SM (1978) Chronospecies’ longevities, the origin of genera, and the punctuational model of evolution. Paleobiology 4:26–40.  https://doi.org/10.1017/S0094837300005662 CrossRefGoogle Scholar
  144. Stanley SM (1979) Macroevolution—pattern and process. Freeman, San FranciscoGoogle Scholar
  145. Stanley SM (1985) Rates of evolution. Paleobiology 11:13–26.  https://doi.org/10.1017/S0094837300011362 CrossRefGoogle Scholar
  146. Stewart JR (2009) The evolutionary consequence of the individualistic response to climate change. J Evol Biol 22:2363–2375.  https://doi.org/10.1111/j.1420-9101.2009.01859.x CrossRefPubMedGoogle Scholar
  147. Stewart JR, Lister AM, Barnes I, Dalen L (2010) Refugia revisited: individualistic responses of species in space and time. Proc Roy Soc London B 277:661–671.  https://doi.org/10.1098/rspb.2009.1272 CrossRefGoogle Scholar
  148. Strefeler MS, Darmo E, Becker RL, Katovich E (1996) Isozyme characterization of genetic diversity in Minnesota populations of purple loosestrife, Lythrum salicaria. Amer J Bot 83:265–273CrossRefGoogle Scholar
  149. Sutherland BL, Galloway LF (2017) Postzygotic isolation varies by ploidy level within a polyploid complex. New Phytol 213:404–412.  https://doi.org/10.1111/nph.14116
  150. Swenson NG (2014) Phylogenetic imputation of plant functional trait databases. Ecogeography 37:105–110.  https://doi.org/10.1111/j.1600-0587.2013.00528.x CrossRefGoogle Scholar
  151. Tank DC et al (2015) Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol 207:454–467.  https://doi.org/10.1111/nph.13491 CrossRefPubMedGoogle Scholar
  152. te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesová M et al (2011) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot (Oxford) 109:19–45.  https://doi.org/10.1093/aob/mcr277
  153. Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534.  https://doi.org/10.1038/nature09705 CrossRefPubMedGoogle Scholar
  154. Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411–424.  https://doi.org/10.1038/nrg.2017.26 CrossRefPubMedGoogle Scholar
  155. Vanneste K, Baele G, Maere S, Van de Peer Y (2014a) Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res 24:1334–1347.  https://doi.org/10.1101/gr.168997.113 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Vanneste K, Maere S, Van de Peer Y (2014b) Review article: tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Phil Trans Roy Soc B 369:20130353CrossRefGoogle Scholar
  157. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49.  https://doi.org/10.1016/j.tree.2014.10.009 CrossRefPubMedGoogle Scholar
  158. Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324.  https://doi.org/10.1111/j.1461-0248.2010.01515.x CrossRefPubMedGoogle Scholar
  159. Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annual Rev Ecol Evol Syst 37:433–458.  https://doi.org/10.1146/annurev.ecolsys.37.091305.110145 CrossRefGoogle Scholar
  160. Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA 108:7908–7913.  https://doi.org/10.1073/pnas.1014138108 CrossRefPubMedGoogle Scholar
  161. Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD et al (2013) Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol 23:2151–2155CrossRefGoogle Scholar
  162. Zhang J, Nielsen SE, Stolar J, Chen Y, Thuiller W (2015) Gains and losses of plant species and phylogenetic diversity for a northern high-latitude region. Diversity Distrib 21:1441–1454.  https://doi.org/10.1111/ddi.12365 CrossRefGoogle Scholar
  163. Zohren J, Wang N, Kardailsky I et al (2016) Unidirectional diploid-tetraploid introgression among British birch trees with shifting ranges shown by restriction site-associated markers. Molec Ecol 25:2413–2426.  https://doi.org/10.1111/mec.13644

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Integrative BiologyUniversity of TexasAustinUSA

Personalised recommendations