Advertisement

Plant Systematics and Evolution

, Volume 305, Issue 1, pp 61–75 | Cite as

Phylogeny of Fargesia (Poaceae: Bambusoideae) and infrageneric adaptive divergence inferred from three cpDNA and nrITS sequence data

  • Yu-Qu Zhang
  • Yun Zhou
  • Xiao-Qi Hou
  • Lei Huang
  • Ju-Qing Kang
  • Jian-Qiang Zhang
  • Yi RenEmail author
Original Article
  • 99 Downloads

Abstract

Fargesia, a temperate woody bamboo genus, is one of the largest genera and constitutes a taxonomically problematic group due to unusual life cycles and the rarity of flowering. We explored phylogenetic relationships within Fargesia and its allies based on sequence data from three cpDNA regions (matK, psbA-trnH and trnL-trnF) and one nuclear region (nrITS). A representative sample of 49 species, including 36 Fargesia and nine Yushania, were sampled, and maximum parsimony, maximum likelihood and Bayesian inference were used to reconstruct the phylogeny of Fargesia. The results suggest that Fargesia is polyphyletic, with F. crassinoda and F. damuniu in the Thamnocalamus clade, F. ampullaris, F. semiorbiculata, F. gyirongensis and F. collaris in the Drepanostachyum + Himalayacalamus clade, and the rest of species of Fargesia and all sampled species of Yushania in a Fargesia + Yushania clade, which was further divided into weakly supported Fargesia spathe and non-spathe clades. Species in the Fargesia spathe clade have the derived “spathe-like leaf sheath syndrome,” which may have evolved as a result of an adaptive advantage of compressed inflorescences in colder temperatures.

Keywords

Adaptive evolution Divergence Fargesia Infrageneric phylogeny Yushania 

Notes

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant No. 31570221).

Compliance with ethical standards

Conflict of interest

The authors of “Phylogeny of Fargesia (Poaceae: Bambusoideae) and infrageneric adaptive divergence inferred from three cpDNA and nrITS sequence data” declare that they have no conflict of interest.

Supplementary material

606_2018_1551_MOESM1_ESM.nex (139 kb)
Supplementary material 1 (NEX 138 kb)
606_2018_1551_MOESM2_ESM.pdf (300 kb)
Supplementary material 2 (PDF 299 kb)
606_2018_1551_MOESM3_ESM.pdf (287 kb)
Supplementary material 3 (PDF 286 kb)

References

  1. Attigala L, Wysocki WP, Duvall MR, Clark LG (2016) Phylogenetic estimation and morphological evolution of Arundinarieae (Bambusoideae: Poaceae) based on plastome phylogenomic analysis. Molec Phylogen Evol 101:111–121.  https://doi.org/10.1016/j.ympev.2016.05.008 CrossRefGoogle Scholar
  2. Bamboo Phylogeny Group (2012) An updated tribal and subtribal classification for the Bambusoideae (Poaceae). In: Gielis J, Potters G (eds) Proceedings of the 9th World Bamboo congress. World Bamboo Organization, Antwerp, pp 3–27Google Scholar
  3. Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, Van der Bank M, Chase MW, Hodkinson TR (2008) Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Molec Phylogen Evol 47:488–505.  https://doi.org/10.1016/j.ympev.2008.01.035 CrossRefGoogle Scholar
  4. Campbell JJN (1987) The history of sino-himalayan bamboo flowering, droughts and sun-spots. J Bamboo Res 6:1–15Google Scholar
  5. Chao CS, Renvoize SA (1989) A revision of the species described under Arundinaria (Gramineae) in Southeast Asia and Africa. Kew Bull 44:349–367.  https://doi.org/10.2307/4110809 CrossRefGoogle Scholar
  6. Chao CS, Chu CD, Hsiung WY (1980) A revision of some genera and species of Chinese bamboos. Acta Phytotax Sin 18:20–36Google Scholar
  7. Chen SL, Sheng GY, Wen TH (1981) Ampelocalamus-A new genus of Chinese Bamboo. Acta Phytotax Sin 19:332–334Google Scholar
  8. Clayton WD, Renvoize SA (1986) Genera Graminum, grasses of the world. Kew Bull Addit Ser XIII Her Majesty’s Stationery Office, LondonGoogle Scholar
  9. Darlu P, Lecointre G (2002) When does the incongruence length difference test fail? Molec Biol Evol 19:432–437.  https://doi.org/10.1093/oxfordjournals.molbev.a004098 CrossRefPubMedGoogle Scholar
  10. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9:772.  https://doi.org/10.1038/nmeth.2109 CrossRefGoogle Scholar
  11. Demoly JP (1991) Recensement des bambous cultivés en Europe. Bambou Bull Assoc Europeene du Bambou Section France 8:20–28Google Scholar
  12. Demoly JP (2005) Nouvelles combinaison snomenclaturales. Bambou Bull Assoc Europeene du Bambou Section France 46:6–8Google Scholar
  13. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.  https://doi.org/10.2307/2408678 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Franchet MA (1893) Fargesia, nouveau genre de Bambuseés de la Chine. Bull Mens Soc Linn Paris 2:1067–1069Google Scholar
  16. Geng PC, Wang CP (1996) Flora Reipublicae Popularis Sinicae. Science Press, BeijingGoogle Scholar
  17. Guo ZH, Li DZ (2004) Phylogenetics of the Thamnocalamus group and its allies (Gramineae: Bambusoideae): inference from the sequences of GBSSI gene and nrITS spacer. Molec Phylogen Evol 30:1–12.  https://doi.org/10.1016/S1055-7903(03)00161-1 CrossRefGoogle Scholar
  18. Guo ZH, Chen YY, Li DZ, Yang JB (2001) Genetic variation and evolution of the alpine bamboos (Poaceae: Bambusoideae) using DNA sequence data. J Pl Res 114:315–322.  https://doi.org/10.1007/PL00013993 CrossRefGoogle Scholar
  19. Guo ZH, Chen YY, Li DZ (2002) Phylogenetic Studies on Thamnocalamus group and its allies (Poaceae: Bambusoideae) based on nrITS sequence data. Molec Phylogen Evol 22:20–30.  https://doi.org/10.1006/mpev.2001.1039 CrossRefGoogle Scholar
  20. Hijmans RJ, Guarino L, Mathur P (2012) DIVA-GIS, Version 7.5, Manual. Available at: http://www.diva-gis.org
  21. Hodkinson TR, Chonghaile GN, Sungkaew S, Chase MW, Salamin N, Stapleton CMA (2010) Phylogenetic analyses of plastid and nuclear DNA sequences indicate a rapid late Miocene radiation of the temperate bamboo tribe Arundinarieae (Poaceae, Bambusoideae). Pl Ecol Diversity 3:109–120.  https://doi.org/10.1080/17550874.2010.521524 CrossRefGoogle Scholar
  22. Hsueh CJ, Li DZ (1987) New taxa of Bambusoideae from Sichuan and Yunnan, with discussion on concepts of related genera. J Bamboo Res 6:16–19Google Scholar
  23. Hsueh CJ, Yi TP (1979) Two new genera of Bambusoideae from S. W. China, 1. Chimonocalamus Hsueh et Yi. Acta Bot Yunnan 1:74–81Google Scholar
  24. Janzen DH (1976) Why bamboos wait so long to flower. Annual Rev Ecol Syst 7:347–391.  https://doi.org/10.1146/annurev.es.07.110176.002023 CrossRefGoogle Scholar
  25. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649.  https://doi.org/10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kelchner SA, Clark LG (1997) Molecular evolution and phylogenetic utility of chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Molec Phylogen Evol 8:385–397.  https://doi.org/10.1006/mpev.1997.0432 CrossRefGoogle Scholar
  27. Kellogg EA (2015) Flowering plants, monocots, Poaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Spinger, Basel, pp 1–416.  https://doi.org/10.1007/978-3-319-15332-2 CrossRefGoogle Scholar
  28. Keng PC (1957) One new genus and two new species of Chinese bamboos. Acta Phytotax Sin 6:355–360Google Scholar
  29. Keng PC (1982) A revision of the genera of bamboos from the world. I. J Bamboo Res 1:1–19Google Scholar
  30. Keng PC (1983) A revision of the genera of bamboos from the world. III. J Bamboo Res 2:11–27Google Scholar
  31. Keng PC (1984) A revision of the genera of bamboos from the world. V. J Bamboo Res 3:22–42Google Scholar
  32. Keng PC (1987) On the nomenclature of the high-alpine bamboos from China. J Bamboo Res 6:11–17Google Scholar
  33. Keng PC, Wen TH (1989) A preliminary study on bamboo classification according to the vegetative characters. J Bamboo Res 8:17–29Google Scholar
  34. Lei KM, Zhang Y, Xiao WY, Cai YS, Ze J, Liu Y, Sun HG, Zeng T (2011) Characteristics of the flowering Fargesia nitida populations in Jiuzhaigou. J Sichuan Forest Sci Technol 32:92–95Google Scholar
  35. Li DZ (1997) The flora of China Bambusoideae project-problems and current understanding of bamboo taxonomy in China. In: Chapman GP (ed) The Bamboos. Academic Press, London, pp 61–81Google Scholar
  36. Li DZ (2003) Flora yunnanica, vol. 9. Science Press, BeijingGoogle Scholar
  37. Li DZ, Guo ZH, Stapleton CMA (2006) Fargesia. In: Wu ZY, Raven PH (eds) Flora of China (Poaceae). Science Press, Beijing, pp 74–96Google Scholar
  38. Li CH, Huang SR, Wang LL, Wang C, Yang GS (2013) Relationship between temperature, accumulation of mineral elements and “green ear” of anthurium spathe. Chin J Trop Agric 33:3–7Google Scholar
  39. Lin SY, Li J, Zhao R, Xu Q, Ding YL (2015) A research on the flowering biological characteristics of Bambusa multiplex in Nanjing City. J Nanjing Forest Univ 39:52–56Google Scholar
  40. Lu JL (1981) The new species of Bambusoideae from China. J Henan Coll Agric 74:70–79Google Scholar
  41. Ma PF, Zhang YX, Zeng CX, Guo ZH, Li DZ (2014) Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo Tribe Arundinarieae (Poaceae). Syst Biol 63:933–950.  https://doi.org/10.1093/sysbio/syu054 CrossRefPubMedGoogle Scholar
  42. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis, version 2.75. Available at: http://mesquiteproject.org. Accessed 30 Sept 2011
  43. McNeely JA (1999) Biodiversity and bamboo genetic resources in Asia: in situ, community-based and ex situ approaches to conservation. Chin Biodivers 7:38–51Google Scholar
  44. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE). New Orleans, US, pp 1–8Google Scholar
  45. Müller K (2005) SeqState. Appl Bioinformatics 4:65CrossRefGoogle Scholar
  46. Nakai T (1935) Novitates Bambusacearum in imperio Japonico recentissime detectae III. J Jap Bot 11:1Google Scholar
  47. Nitecki MH (1990) Evolutionary innovations. University of Chicago Press, ChicagoGoogle Scholar
  48. Ohrnberger D (1996) The bamboos of the world: introduction to the work. Blackwell Ltd., Beaver House, England, p 14Google Scholar
  49. Ohrnberger D (1999) The bamboos of the world: annotated nomenclature and literature of the species and the higher and lower taxa. Elsevier Science, AmsterdamGoogle Scholar
  50. Ørgaard M, Jacobsen N (1998) SEM study of surface structures of the spathe in Cryptocoryne and Lagenandra (Araceae: Aroideae: Cryptocoryneae). Bot J Linn Soc 126:261–289.  https://doi.org/10.1006/bojl.1997.0136 CrossRefGoogle Scholar
  51. Peng S, Yang HQ, Li DZ (2008) Highly heterogeneous generic delimitation within the temperate bamboo clade (Poaceae: Bambusoideae): evidence from GBSSI and ITS sequences. Taxon 57:799–810Google Scholar
  52. Posada D (2008) jModelTest: phylogenetic model averaging. Molec Biol Evol 25:1253–1256.  https://doi.org/10.1093/molbev/msn083 CrossRefPubMedGoogle Scholar
  53. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer, version 1.6. Available at: http://beast.bio.ed.ac.uk/Tracer
  54. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  55. Ruiz-Sanchez E, Sosa V, Mejía-Saules MT (2008) Phylogenetics of Otatea inferred from morphology and chloroplast DNA sequence data, and recircumscription of Guaduinae (Poaceae: Bambusoideae). Syst Bot 33:277–283.  https://doi.org/10.1600/036364408784571644 CrossRefGoogle Scholar
  56. Seifert E (2014) Origin Pro 9.1: scientific data analysis and graphing software-software review. J Chem Inf Model 54(5):1552.  https://doi.org/10.1021/ci500161d CrossRefPubMedGoogle Scholar
  57. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508.  https://doi.org/10.1080/10635150290069913 CrossRefPubMedGoogle Scholar
  58. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247.  https://doi.org/10.1093/bioinformatics/17.12.1246 CrossRefPubMedGoogle Scholar
  59. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381.  https://doi.org/10.1093/sysbio/49.2.369 CrossRefPubMedGoogle Scholar
  60. Soderstrom TR (1979a) The bamboozling Thamnocalamus. Garden 3:22–27Google Scholar
  61. Soderstrom TR (1979b) Another name for the umbrella bamboo. Brittonia 31:495.  https://doi.org/10.2307/2806007 CrossRefGoogle Scholar
  62. Soderstrom TR (1981) Some evolutionary trends in the Bambusoideae (Poaceae). Ann Missouri Bot Gard 68:15–47.  https://doi.org/10.2307/2398809 CrossRefGoogle Scholar
  63. Soderstrom TR, Ellis RP (1982) Taxonomic status of the endemic South African bamboo, Thamnocalamus tessellatus. Bothalia 14:53–67.  https://doi.org/10.4102/abc.v14i1.1135 CrossRefGoogle Scholar
  64. Soderstrom TR, Ellis RP (1987) The position of bamboo genera and allies in a system of grass classification. In: Soderstrom TR, Hilu KW, Campbell S, Barkworth ME (eds) Grass systematics and evolution. Institution Press, Washington, DC, pp 225–238Google Scholar
  65. Soderstrom TR, Ellis RP (1988) The woody bamboos (Poaceae: Bambuseae) of Sri Lanka: a morphological–anatomical study. Smithsonian Contr Bot 72:1–75.  https://doi.org/10.5479/si.0081024X.72 CrossRefGoogle Scholar
  66. Stamatakis A (2006) RA × ML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690.  https://doi.org/10.1093/bioinformatics/btl446 CrossRefGoogle Scholar
  67. Stapleton CMA (1994a) The bamboos of the Nepal and Bhutan Part I: Bambusa, Dendrocalamus, Melocanna, Cephalostachyum, Teinostachyum, and Pseudostachyum (Gramineae: Poaceae, Bambusoideae). Edinburgh J Bot 51:1–32.  https://doi.org/10.1017/S0960428600001682 CrossRefGoogle Scholar
  68. Stapleton CMA (1994b) The bamboos of the Nepal and Bhutan Part II: Arundinaria, Thamnocalamus, Borinda, and Yushania (Gramineae: Poaceae, Bambusoideae). Edinburgh J Bot 51:275–295.  https://doi.org/10.1017/S0960428600000883 CrossRefGoogle Scholar
  69. Stapleton CMA (1994c) The bamboos of the Nepal and Bhutan Part III: Drepanostachyum, Himalayacalamus, Ampelocalamus, Neomicrocalamus and Chimonobambusa (Gramineae: Poaceae, Bambusoideae). Edinburgh J Bot 51:301–330.  https://doi.org/10.1017/S0960428600001815 CrossRefGoogle Scholar
  70. Stapleton CMA (1997) Morphology of woody bamboos. In: Chapman GP (ed) The Bamboos. Academic Press, London, pp 167–251Google Scholar
  71. Stapleton CMA, Li DZ, Xia NH (2005) New combinations for Chinese bamboos (Poaceae, Bambuseae). Novon 15:599–601Google Scholar
  72. Stapleton CMA, Chonghaile GN, Hodkinson TR (2009) Molecular phylogeny of Asian woody bamboos: Review for the Flora of China. Bam Sci Cult: J Amer Bamboo Soc 22:5–25Google Scholar
  73. Sungkaew S, Stapleton CMA, Salamin N, Hodkinson TR (2009) Non-monophyly of the woody bamboos (Bambuseae; Poaceae): a multi-gene region phylogenetic analysis of Bambusoideae. J Pl Res 122:95–108.  https://doi.org/10.1007/s10265-008-0192-6 CrossRefGoogle Scholar
  74. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0 Beta. Sinauer Ass. Inc., SunderlandGoogle Scholar
  75. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109.  https://doi.org/10.1007/BF00037152 CrossRefGoogle Scholar
  76. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefPubMedGoogle Scholar
  77. Triplett JK, Clark LG (2010) Phylogeny of the temperate bamboos (Poaceae: Bambusoideae: Bambuseae) with an emphasis on Arundinaria and allies. Syst Bot 35:102–120.  https://doi.org/10.1600/036364410790862678 CrossRefGoogle Scholar
  78. Viana PL, Filgueiras TS, Paiva EAS (2011) A new combination in Aulonemia (Poaceae: Bambusoideae: Bambuseae) based on floral analysis, anatomical features, and distribution. Brittonia 63:102–112.  https://doi.org/10.1007/s12228-010-9138-0 CrossRefGoogle Scholar
  79. Wang CP (1997) A proposal concerning a system of classification of Bambusoideae from China. J Bamboo Res 16:1–6Google Scholar
  80. Wang CP, Ye GH (1980) On the problems of the classification of Chinese bamboos with creeping rhizomes. Acta Phytotax Sin 18:283–291Google Scholar
  81. Wang ZP, Ye GH (1981) Miscellaneous notes on Chinese Bambusoideae. J Nanjing Univ (Nat Sci) 1:91–108Google Scholar
  82. Wang XQ, Ye XY, Zhao L, Li DZ, Guo ZH, Zhuang HF (2017) Genome-wide RAD sequencing data provide unprecedented resolution of the phylogeny of temperate bamboos (Poaceae: Bambusoideae). Sci Rep 7:11546.  https://doi.org/10.1038/s41598-017-11367-x CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wen TH (1984) New taxa of Bambusoideae in China (I). J Bamboo Res 3:23–47Google Scholar
  84. Wen TH (1989) Some new bamboos from Southern Yangtze River. J Bamboo Res 8:13–24Google Scholar
  85. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  86. Yang HM, Zhang YX, Yang JB, Li DZ (2013) The monophyly of Chimonocalamus and conflicting gene trees in Arundinarieae (Poaceae: Bambusoideae) inferred from four plastid and two nuclear markers. Molec Phylogen Evol 68:340–356.  https://doi.org/10.1016/j.ympev.2013.04.002 CrossRefGoogle Scholar
  87. Yi TP (1982) A revision of the genera of Fargesia group in China. J Sichuan Forest Sci Technol 2:54–59Google Scholar
  88. Yi TP (1983a) New taxa of Bamboosoideae from Xizang (Tibet), China. J Bamboo Res 2:28–46Google Scholar
  89. Yi TP (1983b) New species of Fargesia Franchet and Yushania Keng f. from Tibet. J Bamboo Res 2:18–53Google Scholar
  90. Yi TP (1983c) A new species of bamboo form island Hainan, China. Bull Bot Res 3:151–154Google Scholar
  91. Yi TP (1985a) Classification and distribution of the food bamboos of the Giant Panda (I). J Bamboo Res 4:11–27Google Scholar
  92. Yi TP (1985b) Classification and distribution of the food bamboos of the Giant Panda (II). J Bamboo Res 4:20–45Google Scholar
  93. Yi TP (1985c) New taxa of bamboo from China. Bull Bot Res 5:121–137Google Scholar
  94. Yi TP (1986) A new species of Fargesia from Sichuan. Acta Bot Yunnan 8:48–50Google Scholar
  95. Yi TP (1988a) A study on the genus Fargesia from China. J Bamboo Res 7:1–119Google Scholar
  96. Yi TP (1988b) Four new species of bamboo from South Yunnan, China. Acta Bot Yunnan 10:437–443Google Scholar
  97. Yi TP (1989) Two new species of bamboo from Southwest Sichuan. Acta Bot Yunnan 11:35–38Google Scholar
  98. Yi TP (1992) New bamboos of Fargesia and Chimonobambusa from Sichuan. Acta Bot Yunnan 14:135–138Google Scholar
  99. Yi TP (1996) Fargesia, Yushania. In: Geng PC, Wang ZP (eds) Flora reipublicae popularis sinicae. Science Press, Beijing, pp 387–560Google Scholar
  100. Yi TP (2000) A new species of Fargesia from northeastern Sichuan, China. Acta Bot Yunnan 22:251–254Google Scholar
  101. Yi TP, Long TL (1989) Two new species of bamboos for Giant Panda. J Bamboo Res 8:30–36Google Scholar
  102. Yi TP, Shao JX (1987) New taxa of Fargesia from Shaanxi. J Bamboo Res 6:42–45Google Scholar
  103. Yi TP, Zhu XB (2012) A new species and two combinations of Bambusoideae (Poaceae). J Sichuan Forest Sci Technol 33:8–11Google Scholar
  104. Yi TP, Shi JY, Yang L (2007) Alpine new bamboos from Sichuan, Tibet and Chongqing, China. Bull Bot Res 27:515–520Google Scholar
  105. Yi TP, Shi JY, Ma LS (2008) Iconographia bambusoidearum sinicarum. Science Press, BeijingGoogle Scholar
  106. Zeng CZ, Zhang YX, Triplett JK, Yang JB, Li DZ (2010) Large multi-locus plastid phylogeny of the tribe Arundinarieae (Poaceae: Bambusoideae) reveals ten major lineages and low rate of molecular divergence. Molec Phylogen Evol 56:821–839.  https://doi.org/10.1016/j.ympev.2010.03.041 CrossRefGoogle Scholar
  107. Zhang WP, Clark LG (2000) Phylogeny of classification of the Bambusoideae (Poaceae). In: Jacobs SWL, Everett JE (eds) Grasses: systematics and evolution. CSIRO, Collingwood, pp 35–42Google Scholar
  108. Zhang YQ, Ren Y (2016) Supplementary description of flower and flowering branch for four Fargesia species and one Drepanostachyum species (Bambusoideae, Poaceae), and notes on their taxonomy. Nordic J Bot 34:565–572.  https://doi.org/10.1111/njb.00975 CrossRefGoogle Scholar
  109. Zhang YX, Zeng CX, Li DZ (2012) Complex evolution in Arundinarieae (Poaceae: Bambusoideae): incongruence between plastid and nuclear GBSSI gene phylogenies. Molec Phylogen Evol 63:777–797.  https://doi.org/10.1016/j.ympev.2012.02.023 CrossRefGoogle Scholar
  110. Zhang XZ, Zeng CX, Ma PF, Haevermans T, Zhang YX, Zhang LN, Guo ZH, Li DZ (2016) Multi-locus plastid phylogenetic biogeography supports the Asian hypothesis of the temperate woody bamboos (Poaceae: Bambusoideae). Molec Phylogen Evol 96:118–129.  https://doi.org/10.1016/j.ympev.2015.11.025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Yu-Qu Zhang
    • 1
    • 2
  • Yun Zhou
    • 1
  • Xiao-Qi Hou
    • 1
  • Lei Huang
    • 1
  • Ju-Qing Kang
    • 1
  • Jian-Qiang Zhang
    • 1
  • Yi Ren
    • 1
    Email author
  1. 1.College of Life SciencesShaanxi Normal UniversityXi’anChina
  2. 2.Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina

Personalised recommendations