Li–Yorke chaos for composition operators on \(L^p\)-spaces

  • N. C. BernardesJr.
  • U. B. DarjiEmail author
  • B. Pires


Li–Yorke chaos is a popular and well-studied notion of chaos. Several simple and useful characterizations of this notion of chaos in the setting of linear dynamics were obtained recently. In this note we show that even simpler and more useful characterizations of Li–Yorke chaos can be given in the special setting of composition operators on \(L^p\)-spaces. As a consequence we obtain a simple characterization of weighted shifts which are Li–Yorke chaotic. We give numerous examples to show that our results are sharp.


Li–Yorke chaos Composition operators \(L^p\)-spaces Weakly wandering sets 

Mathematics Subject Classification

Primary 47A16 47B33 Secondary 37D45 



The authors thank the referee whose valuable comments improved the presentation of the article.


  1. 1.
    Bayart, F., Darji, U.B., Pires, B.: Topological transitivity and mixing of composition operators. J. Math. Anal. Appl. 465(1), 125–139 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  3. 3.
    Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li–Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bernardes Jr., N.C., Bonilla, A., Müller, V., Peris, A.: Distributional chaos for linear operators. J. Funct. Anal. 265(9), 2143–2163 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bernardes Jr., N.C., Bonilla, A., Müller, V., Peris, A.: Li–Yorke chaos in linear dynamics. Ergod. Theory Dyn. Syst. 35(6), 1723–1745 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bernardes Jr., N.C., Cirilo, P.R., Darji, U.B., Messaoudi, A., Pujals, E.R.: Expansivity and shadowing in linear dynamics. J. Math. Anal. Appl. 461(1), 796–816 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bès, J., Menet, Q., Peris, A., Puig, Y.: Recurrence properties of hypercyclic operators. Math. Ann. 366(1), 545–572 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Grivaux, S., Matheron, É., Menet, Q.: Linear dynamical systems on Hilbert spaces: typical properties and explicity examples. Preprint, arXiv:1703.01854
  9. 9.
    Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Springer, London (2011)CrossRefGoogle Scholar
  10. 10.
    Hajian, A.B., Kakutani, S.: Weakly wandering sets and invariant measures. Trans. Am. Math. Soc. 110, 136–151 (1964)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Menet, Q.: Linear chaos and frequent hypercyclicity. Trans. Am. Math. Soc. 369(7), 4977–4994 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Prǎjiturǎ, G.T.: Irregular vectors of Hilbert space operators. J. Math. Anal. Appl. 354(2), 689–697 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill Inc, New York (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada, Instituto de MatemáticaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of MathematicsUniversity of LouisvilleLouisvilleUSA
  3. 3.Departamento de Computação e Matemática, Faculdade de Filosofia Ciências e LetrasUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations