Linear relations among asymptotic frequencies in continued fractions

  • Kurt GirstmairEmail author


Let H(md) denote the asymptotic frequency of the natural numbers \(k\equiv d \mod m\) in the continued fraction expansions of almost all numbers \(x\in [0,1)\). For a fixed number \(m\ge 4\), we study \(\mathbb {Q}\)-linear relations among the numbers H(md), \(1\le d\le m-3\), i.e., vectors \((c_1,\ldots ,c_{m-3})\in \mathbb {Q}^{m-3}\) such that
$$\begin{aligned} \sum _{d=1}^{m-3} c_dH(m,d)=0. \end{aligned}$$
We restrict ourselves to the symmetric case \(c_d=c_{m-2-d}\). In the end, we obtain a basis of the \(\mathbb {Q}\)-vector space of these relations for prime powers m and for \(m=pq\), where \(p\ne q\) are primes.


Asymptotic frequencies in continued fractions Linear relations among transcendental numbers Cyclotomic units 

Mathematics Subject Classification

11K50 11J81 



  1. 1.
    Baker, A.: Transcendental Number Theory. Cambridge University Press, Cambridge (1975)CrossRefGoogle Scholar
  2. 2.
    Chudnovsky, G.V.: Contributions to the Theory of Transcendental Numbers. American Mathematical Society, Providence (1984)CrossRefGoogle Scholar
  3. 3.
    Girstmair, K.: Häufigkeiten in Kettenbrüchen und transzendente Zahlen. Math. Semesterber. 63, 227–247 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Iosifescu, M., Kraaikamp, C.: Metrical Theory of Continued Fractions. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  5. 5.
    Nolte, V.N.: Some probabilistic results on the convergents of continued fractions. Indag. Math. (N. S.) 1, 381–389 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Washington, L.C.: Introduction to Cyclotomic Fields. Springer, New York (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für MathematikUniversität InnsbruckInnsbruckAustria

Personalised recommendations