Free distance ratio mappings in Banach spaces
Article
First Online:
- 15 Downloads
Abstract
In this paper, we introduce a class of mappings related to the distance ratio metric and study its connection to the freely quasiconformal mapping in Banach spaces. Moreover, we investigate the invariance of Gromov hyperbolic, natural and uniform domains under this class of mappings.
Keywords
Quasihyperbolic metric Distance ratio metric Free distance ratio mapping Free quasiconformal mapping Uniform domainsMathematics Subject Classification
Primary 30C65 30F45 Secondary 30C20Notes
References
- 1.Gehring, F.W., Osgood, B.G.: Uniform domains and the quasi-hyperbolic metric. J. Anal. Math. 36, 50–74 (1979)CrossRefGoogle Scholar
- 2.Gehring, F.W., Palka, B.P.: Quasiconformally homogeneous domains. J. Anal. Math. 30, 172–199 (1976)MathSciNetCrossRefGoogle Scholar
- 3.Hariri, P., Vuorinen, M., Zhang, X.: Inequalities and bi-Lipschitz conditions for the triangular ratio metric. Rocky Mt. J. Math. 47, 1121–1148 (2017)MathSciNetCrossRefGoogle Scholar
- 4.Hästö, P., Klén, R., Sahoo, S.K., Vourinen, M.: Geometric properties of \(\varphi \)-uniform domains. J. Anal. 24, 57–66 (2016)MathSciNetCrossRefGoogle Scholar
- 5.Huang, M., Ponnusamy, S., Rasila, A., Wang, X.: On quasisymmetry of quasiconformal mappings. Adv. Math. 288, 1069–1096 (2016)MathSciNetCrossRefGoogle Scholar
- 6.Huang, M., Rasila, A., Wang, X., Zhou, Q.: Semisolidity and locally weak quasisymmetry of homeomorphisms in metric spaces. Stud. Math. 242, 267–301 (2018)MathSciNetCrossRefGoogle Scholar
- 7.Li, P., Ponnusamy, S.: Lipschitz continuity of quasiconformal mappings and of the solutions to second order elliptic PDE with respect to the distance ratio metric. Complex Anal. Oper. Theory 12, 1991–2001 (2018)MathSciNetCrossRefGoogle Scholar
- 8.Li, Y., Ponnusamy, S., Vuorinen, M.: Freely quasiconformal maps and distance ratio metric. J. Aust. Math. Soc. 97, 383–390 (2014)MathSciNetCrossRefGoogle Scholar
- 9.Li, Y., Vuorinen, M., Zhou, Q.: Weakly quasisymmetric maps and uniform spaces. Comput. Methods Funct. Theory 18, 689–715 (2018)MathSciNetCrossRefGoogle Scholar
- 10.Li, Y., Vuorinen, M., Zhou, Q.: Apollonian metric, uniformity and Gromov hyperbolicity. Complex Var. Elliptic Equ. (2019). https://doi.org/10.1080/17476933.2019.1579203 CrossRefGoogle Scholar
- 11.Martio, O., Sarvas, J.: Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser. A I Math. 4, 383–401 (1978) MathSciNetCrossRefGoogle Scholar
- 12.Rasila, A., Talponen, J.: On quasihyperbolic geodesics in Banach spaces. Ann. Acad. Sci. Fenn. Ser. A I Math 39, 163–173 (2014)MathSciNetCrossRefGoogle Scholar
- 13.Simić, S., Vuorinen, M.: Lipschitz conditions and the distance ratio metric. Filomat 29, 2137–2146 (2015)MathSciNetCrossRefGoogle Scholar
- 14.Väisälä, J.: Free quasiconformality in Banach spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 15, 355–379 (1990)MathSciNetCrossRefGoogle Scholar
- 15.Väisälä, J.: Free quasiconformality in Banach spaces. II. Ann. Acad. Sci. Fenn. Ser. A I Math. 16, 255–310 (1991)MathSciNetCrossRefGoogle Scholar
- 16.Väisälä, J.: Free quasiconformality in Banach spaces. III. Ann. Acad. Sci. Fenn. Ser. A I Math. 17, 393–408 (1992)MathSciNetCrossRefGoogle Scholar
- 17.Väisälä, J.: Free Quasiconformality in Banach Spaces. IV, Analysis and Topology, pp. 697–717. World Scientific Publishing, River Edge, N.J. (1998)zbMATHGoogle Scholar
- 18.Väisälä, J.: The free quasiworld, freely quasiconformal and related maps in Banach spaces, Quasiconformal geometry and dynamics (Lublin 1996). Banach Center Publ. 48, 55–118 (1999)CrossRefGoogle Scholar
- 19.Väisälä, J.: Broken tubes in Hilbert spaces. Analysis (Munich) 24, 227–238 (2004)MathSciNetzbMATHGoogle Scholar
- 20.Väisälä, J.: Gromov hyperbolic spaces. Expo. Math. 23, 187–231 (2005)MathSciNetCrossRefGoogle Scholar
- 21.Vuorinen, M.: Capacity densities and angular limits of quasiregular mappings. Trans. Am. Math. Soc. 263, 343–354 (1981)MathSciNetCrossRefGoogle Scholar
- 22.Vuorinen, M.: Conformal invariants and quasiregular mappings. J. Anal. Math. 45, 69–115 (1985)MathSciNetCrossRefGoogle Scholar
- 23.Vuorinen, M.: Conformal Geometry and Quasiregular Mappings (Monograph). Lecture Notes in Mathematics, vol. 1319. Springer, Berlin (1988)CrossRefGoogle Scholar
- 24.Wang, X., Zhou, Q., Guan, T., Huang, M., Rasila, A.: A note on the relationship between quasi-symmetric mappings and \(\varphi \)-uniform domains. J. Math. Anal. Appl. 445, 1114–1119 (2017)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer-Verlag GmbH Austria, part of Springer Nature 2019