Advertisement

Free distance ratio mappings in Banach spaces

  • Qingshan Zhou
  • Antti Rasila
  • Yaxiang LiEmail author
Article
  • 15 Downloads

Abstract

In this paper, we introduce a class of mappings related to the distance ratio metric and study its connection to the freely quasiconformal mapping in Banach spaces. Moreover, we investigate the invariance of Gromov hyperbolic, natural and uniform domains under this class of mappings.

Keywords

Quasihyperbolic metric Distance ratio metric Free distance ratio mapping Free quasiconformal mapping Uniform domains 

Mathematics Subject Classification

Primary 30C65 30F45 Secondary 30C20 

Notes

References

  1. 1.
    Gehring, F.W., Osgood, B.G.: Uniform domains and the quasi-hyperbolic metric. J. Anal. Math. 36, 50–74 (1979)CrossRefGoogle Scholar
  2. 2.
    Gehring, F.W., Palka, B.P.: Quasiconformally homogeneous domains. J. Anal. Math. 30, 172–199 (1976)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hariri, P., Vuorinen, M., Zhang, X.: Inequalities and bi-Lipschitz conditions for the triangular ratio metric. Rocky Mt. J. Math. 47, 1121–1148 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hästö, P., Klén, R., Sahoo, S.K., Vourinen, M.: Geometric properties of \(\varphi \)-uniform domains. J. Anal. 24, 57–66 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Huang, M., Ponnusamy, S., Rasila, A., Wang, X.: On quasisymmetry of quasiconformal mappings. Adv. Math. 288, 1069–1096 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Huang, M., Rasila, A., Wang, X., Zhou, Q.: Semisolidity and locally weak quasisymmetry of homeomorphisms in metric spaces. Stud. Math. 242, 267–301 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, P., Ponnusamy, S.: Lipschitz continuity of quasiconformal mappings and of the solutions to second order elliptic PDE with respect to the distance ratio metric. Complex Anal. Oper. Theory 12, 1991–2001 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, Y., Ponnusamy, S., Vuorinen, M.: Freely quasiconformal maps and distance ratio metric. J. Aust. Math. Soc. 97, 383–390 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, Y., Vuorinen, M., Zhou, Q.: Weakly quasisymmetric maps and uniform spaces. Comput. Methods Funct. Theory 18, 689–715 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Li, Y., Vuorinen, M., Zhou, Q.: Apollonian metric, uniformity and Gromov hyperbolicity. Complex Var. Elliptic Equ. (2019).  https://doi.org/10.1080/17476933.2019.1579203 CrossRefGoogle Scholar
  11. 11.
    Martio, O., Sarvas, J.: Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser. A I Math. 4, 383–401 (1978) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rasila, A., Talponen, J.: On quasihyperbolic geodesics in Banach spaces. Ann. Acad. Sci. Fenn. Ser. A I Math 39, 163–173 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Simić, S., Vuorinen, M.: Lipschitz conditions and the distance ratio metric. Filomat 29, 2137–2146 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Väisälä, J.: Free quasiconformality in Banach spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 15, 355–379 (1990)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Väisälä, J.: Free quasiconformality in Banach spaces. II. Ann. Acad. Sci. Fenn. Ser. A I Math. 16, 255–310 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Väisälä, J.: Free quasiconformality in Banach spaces. III. Ann. Acad. Sci. Fenn. Ser. A I Math. 17, 393–408 (1992)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Väisälä, J.: Free Quasiconformality in Banach Spaces. IV, Analysis and Topology, pp. 697–717. World Scientific Publishing, River Edge, N.J. (1998)zbMATHGoogle Scholar
  18. 18.
    Väisälä, J.: The free quasiworld, freely quasiconformal and related maps in Banach spaces, Quasiconformal geometry and dynamics (Lublin 1996). Banach Center Publ. 48, 55–118 (1999)CrossRefGoogle Scholar
  19. 19.
    Väisälä, J.: Broken tubes in Hilbert spaces. Analysis (Munich) 24, 227–238 (2004)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Väisälä, J.: Gromov hyperbolic spaces. Expo. Math. 23, 187–231 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vuorinen, M.: Capacity densities and angular limits of quasiregular mappings. Trans. Am. Math. Soc. 263, 343–354 (1981)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Vuorinen, M.: Conformal invariants and quasiregular mappings. J. Anal. Math. 45, 69–115 (1985)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Vuorinen, M.: Conformal Geometry and Quasiregular Mappings (Monograph). Lecture Notes in Mathematics, vol. 1319. Springer, Berlin (1988)CrossRefGoogle Scholar
  24. 24.
    Wang, X., Zhou, Q., Guan, T., Huang, M., Rasila, A.: A note on the relationship between quasi-symmetric mappings and \(\varphi \)-uniform domains. J. Math. Anal. Appl. 445, 1114–1119 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and Big DataFoshan UniversityFoshanPeople’s Republic of China
  2. 2.Guangdong TechnionIsrael Institute of TechnologyShantouPeople’s Republic of China
  3. 3.Department of MathematicsHunan First Normal UniversityChangshaPeople’s Republic of China
  4. 4.Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in EngineeringChangsha University of Science and TechnologyChangshaPeople’s Republic of China

Personalised recommendations