Advertisement

Monatshefte für Mathematik

, Volume 188, Issue 2, pp 297–307 | Cite as

Weighted outer inverse

  • Dijana MosićEmail author
  • Dragan S. Djordjević
Article
  • 45 Downloads

Abstract

We study the weighted outer generalized inverse of a given operator between Banach spaces, as well as weighted outer generalized inverses of elements in rings and Banach algebras.

Keywords

Outer generalized inverse Idempotents Weighted generalized inverse Perturbation 

Mathematics Subject Classification

47A05 15A09 

Notes

Acknowledgements

The authors are grateful to the Editor and referee for careful reading of the paper.

References

  1. 1.
    Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)zbMATHGoogle Scholar
  2. 2.
    Cline, R.E., Greville, T.N.E.: A Drazin inverse for rectangular matrices. Linear Algebra Appl. 29, 53–62 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dajić, A., Koliha, J.J.: The weighted g-Drazin inverse for operators. J. Aust. Math. Soc. 82, 163–181 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Djordjević, D.S., Wei, Y.: Operators with equal projections related to their generalized inverses. Appl. Math. Comput. 155, 655–664 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Djordjević, D.S., Wei, Y.: Outer generalized inverses in rings. Commun. Algebra 33, 3051–3060 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Liu, X., Zhong, J., Yu, Y.: Representation for the W-weighted Drazin inverse of linear operators. J. Appl. Math. Comput. 34, 317–328 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kyrchei, I.: Determinantal representations of the W-weighted Drazin inverse over the quaternion skew field. Appl. Math. Comput. 264, 453–465 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kyrchei, I.: Weighted singular value decomposition and determinantal representations of the quaternion weighted Moore–Penrose inverse. Appl. Math. Comput. 309, 1–16 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Rakočević, V., Wei, Y.: A weighted Drazin inverse and applications. Linear Algebra Appl. 350, 25–39 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rakočević, V., Wei, Y.: The perturbation theory for the Drazin inverse and its applications II. J. Aust. Math. Soc. 70, 189–197 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Stanimirović, P.S., Katsikis, V.N., Ma, H.: Representations and properties of the W-weighted Drazin inverse. Linear Multilinear Algebra 65(6), 1080–1096 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wei, Y., Wang, W.G.: The perturbation theory for the Drazin inverse and its applications. Linear Algebra Appl. 258, 179–186 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Sciences and MathematicsUniversity of NišNišSerbia

Personalised recommendations