Advertisement

Bounded Engel elements in residually finite groups

  • Raimundo Bastos
  • Danilo SilveiraEmail author
Article
  • 9 Downloads

Abstract

Let q be a prime. Let G be a residually finite group satisfying an identity. Suppose that for every \(x \in G\) there exists a q-power \(m=m(x)\) such that the element \(x^m\) is a bounded Engel element. We prove that G is locally virtually nilpotent. Further, let dn be positive integers and w a non-commutator word. Assume that G is a d-generator residually finite group in which all w-values are n-Engel. We show that the verbal subgroup w(G) has \(\{d,n,w\}\)-bounded nilpotency class.

Keywords

Engel elements Residually finite groups Verbal subgroups Non-commutator words 

Mathematics Subject Classification

20F45 20E26 

Notes

References

  1. 1.
    Bastos, R.: On residually finite groups with Engel-like conditions. Commun. Algebra 44, 4177–4184 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bastos, R., Mansuroğlu, N., Tortora, A., Tota, M.: Bounded Engel elements in groups satisfying an identity. Arch. Math. 110, 311–318 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bastos, R., Shumyatsky, P., Tortora, A., Tota, M.: On groups admitting a word whose values are Engel. Int. J. Algebra Comput. 23, 81–89 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dixon, J.D., du Sautoy, M.P.F., Mann, A., Segal, D.: Analytic Pro-p Groups. Cambridge University Press, Cambridge (1991)zbMATHGoogle Scholar
  5. 5.
    Golod, E.S.: On nil-algebras and finitely approximable \(p\)-groups. Izv. Akad. Nauk SSSR Ser. Mat. 28, 273–276 (1964)MathSciNetGoogle Scholar
  6. 6.
    Grigorchuk, R.I.: On Burnside’s problem on periodic groups. Funct. Anal. Appl. 14, 41–43 (1980)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gupta, N., Sidki, S.: On the Burnside problem for periodic groups. Math. Z. 182, 385–386 (1983)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Huppert, B., Blackburn, N.: Finite Groups II. Springer, Berlin (1982)zbMATHGoogle Scholar
  9. 9.
    Lazard, M.: Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. École Norm. Sup. 71, 101–190 (1954)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lazard, M.: Groupes analytiques \(p\)-adiques. IHES Publ. Math. 26, 389–603 (1965)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Longobardi, P., Maj, M., Smith, H.: A note on locally graded groups. Rend. Sem. Mat. Univ. Padova 94, 275–277 (1995)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Macedońska, O.: On difficult problems and locally graded groups. J. Math. Sci. (N.Y.) 142, 1949–1953 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nikolov, N., Segal, D.: Powers in finite groups. Groups Geom. Dyn. 5, 501–507 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Robinson, D.J.S.: A Course in the Theory of Groups, 2nd edn. Springer, New York (1996)CrossRefGoogle Scholar
  15. 15.
    Shumyatsky, P.: Applications of Lie ring methods to group theory. In: Costa, R., et al. (eds.) Nonassociative Algebra and Its Applications, pp. 373–395. Marcel Dekker, New York (2000)zbMATHGoogle Scholar
  16. 16.
    Shumyatsky, P., Silveira, D.S.: On finite groups with automorphisms whose fixed points are Engel. Arch. Math. 106, 209–218 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Shumyatsky, P., Tortora, A., Tota, M.: On varieties of groups satisfying an Engel type identity. J. Algebra 447(2016), 479–489 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shumyatsky, P., Tortora, A., Tota, M.: Engel groups with an identity. Int. J. Algebra Comput. (2018). Preprint arXiv:1805.12411 [math.GR]
  19. 19.
    Sushchansky, V.I.: Periodic p-elements of permutations and the general Burnside problem. Dokl. Akad. Nauk SSSR 247, 447–461 (1979)Google Scholar
  20. 20.
    Tits, J.: Free subgroups in linear groups. J. Algebra 20, 250–270 (1972)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wilson, J.S.: Two-generator conditions for residually finite groups. Bull. Lond. Math. Soc. 23, 239–248 (1991)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wilson, J.S., Zelmanov, E.I.: Identities for Lie algebras of pro-\(p\) groups. J. Pure Appl. Algebra 81, 103–109 (1992)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zelmanov, E.I.: On the restricted Burnside problem. In: Proceedings of the International Congress of Mathematicians, pp. 395–402 (1990)Google Scholar
  24. 24.
    Zelmanov, E.: The solution of the restricted Burnside problem for groups of odd exponent. Math. USSR Izv. 36, 41–60 (1991)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zelmanov, E.: The solution of the restricted Burnside problem for 2-groups. Math. Sb. 182, 568–592 (1991)Google Scholar
  26. 26.
    Zelmanov, E.I.: Lie algebras and torsion groups with identity. J. Combin. Algebra 1, 289–340 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Departamento de MatemáticaUniversidade Federal de GoiásCatalãoBrazil

Personalised recommendations