Advertisement

Lipschitz p-compact mappings

  • Dahmane Achour
  • Elhadj Dahia
  • Pablo TurcoEmail author
Article
  • 18 Downloads

Abstract

We introduce the notion of Lipschitz p-compact operators. We show that they can be seen as a natural extension of the linear p-compact operators of Sinha and Karn and we transfer some properties of the linear case into the Lipschitz setting. Also, we introduce the notions of Lipschitz-free p-compact operators and Lipschitz locally p-compact operators. We compare all these three notions and show different properties. Finally, we exhibit examples to show that these three notions are different.

Keywords

Lipschitz operators Lipschitz p-compact operators Lipschitz-free p-compact mappings Locally p-compact mappings 

Mathematics Subject Classification

Primary 47B07 47B10 Secondary 26A16 47L20 

Notes

Acknowledgements

The authors want to thank the referee for his/her careful reading and useful suggestions. P. Turco was supported in part by CONICET PIP 0483, ANPCyT PICT-2015-2299 and UBACyT 1-474.

References

  1. 1.
    Achour, D., Rueda, P., Sánchez-Pérez, E.A., Yahi, R.: Lipchitz operator ideals and the approximation property. J. Math. Anal. Appl. 436, 217–236 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ain, K., Lillemets, R., Oja, E.: Compact operators which are defined by $\ell _p$-spaces. Quaest. Math. 35, 145–159 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cabrera-Padilla, M., Jiménez-Vargas, A.: A new approach on Lipschitz compact operators. Topol. Appl. 203, 22–31 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cabrera-Padilla, M., Chávez-Domínguez, A., Jiménez-Vargas, A., Villegas-Vallecillos, M.: Maximal Banach ideals of Lipschitz maps. Ann. Funct. Anal. 7, 593–608 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cohen, J.S.: Absolutely $p$-summing, $p$-nuclear operators and their conjugates. Math. Ann. 201, 177–200 (1973)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Delgado, J.M., Piñeiro, C., Serrano, E.: Operators whose adjoints are quasi $p$-nuclear. Stud. Math. 197, 291–304 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Defant, A., Floret, K.: Tensor norms and operators ideal. North Holland Publishing Co., Amsterdam (1993)zbMATHGoogle Scholar
  8. 8.
    Farmer, J., Johnson, W.: Lipschitz p-summing operators. Proc. Am. Math. Soc. 137, 2989–2995 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Galicer, D., Lassalle, S., Turco, P.: The ideal of $p$-compact operators: a tensor product approach. Stud. Math. 2828, 269–286 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Godard, A.: Tree metrics and their Lipschitz-free spaces. Proc. Am. Math. Soc. 138(12), 4311–4320 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Godefroy, G.: A survey on Lipschitz-free Banach spaces. Comment. Math. 55(2), 89–118 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 1955(16), 140 (1955). (French) zbMATHGoogle Scholar
  13. 13.
    Jiménez-Vargas, A., Sepulcre, J.M., Villegas-Vallecillos, M.: Lipschitz compact operators. J. Math. Anal. Appl. 415, 889–901 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kalton, N.J.: Spaces of Lipschitz and Hölder functions and their applications. Collect. Math. 55, 171–217 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lassalle, S., Turco, P.: On $p$-compact mappings and the $p$-approximation properties. J. Math. Anal. Appl. 389, 1204–1221 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pietsch, A.: Operator Ideals. Deutsch. Verlag Wiss., Berlin, 1978; North-Holland, Amsterdam–London-New York–Tokyo (1980)Google Scholar
  17. 17.
    Persson, A., Pietsch, A.: $p$-nuklear und $p$-integrale Abbildungen in Banachräumen. Stud. Math. 33, 19–62 (1969)CrossRefGoogle Scholar
  18. 18.
    Pietsch, A.: The ideal of $p$-compact operators and its maximal hull. Proc. Am. Math. Soc. 142(2), 519–530 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Saadi, K.: On the composition ideals of Lipschitz mappings. Banach J. Math. Anal. 11, 825–840 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sawashima, I.: Methods of Lipschitz Duals. Lecture Notes Ec. Math Sust, vol. 419, pp. 247–259. Springer, Berlin (1975)zbMATHGoogle Scholar
  21. 21.
    Sinha, D.P., Karn, A.K.: Compact operators whose adjoints factor through subspaces of $\ell _{p}$. Stud. Math. 150, 17–33 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Weaver, N.: Lipschitz Algebras. World Scientific Publishing Co., Inc., River Edge (1999)CrossRefGoogle Scholar
  23. 23.
    Yahi, R., Achour, D., Rueda, P.: Absolutely summing Lipschitz conjugates. Mediterr. J. Math. 13, 1949–1961 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire d’Analyse Fonctionnelle et Géométrie des EspacesUniversity of M’silaM’silaAlgeria
  2. 2.Ecole Normale Supérieure de BousaadaBousaadaAlgeria
  3. 3.IMAS-UBA-CONICETCONICET and Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations