Monatshefte für Mathematik

, Volume 188, Issue 4, pp 629–651 | Cite as

Dispersive limits for some perturbations of the NLS equation

  • Mohamad Darwich
  • Nobu Kishimoto
  • Luc MolinetEmail author


We are interesting in dispersive limits for perturbations of the NLS equation by a higher order linear term that competes with the Laplacian. We prove convergence results towards the solution of the limit equation by studying carefully the dependence of some dispersive effects with respect to the small parameter.


Dispersive limit Fourth order NLS equation Vortex filaments 

Mathematics Subject Classification

35Q55 35B30 35G25 



This work was initiated during an invitation of N.K. at the University of Tours. N.K. gratefully acknowledges the hospitality and support of the L.M.P.T. and of the University of Tours.


  1. 1.
    Karpman, V.: Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear Schrdinger-type equations. Phys. Rev. E 53(2), R1336–R1339 (1996)CrossRefGoogle Scholar
  2. 2.
    Fukumoto, Y., Moffatt, H.K.: Motion and expansion of a viscous vortex ring. I. A higher-order asymptotic formula for the velocity. J. Fluid Mech. 417, 1–45 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Segata, J.: Well-posedness for the fourth-order nonlinear Schrodinger-type equation related to the vortex filament. Differ. Integral Equ. 16(7), 841–864 (2003)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Segata, J.: Remark on well-posedness for the fourth order nonlinear Schrodinger type equation. Proc. Am. Math. Soc. 132(12), 3559–3568 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Huo, Z., Jia, Y.: The Cauchy problem for the fourth-order nonlinear Schrodinger equation related to the vortex filament. J. Differ. Equ. 214(1), 1–35 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Huo, Z., Jia, Y.: A refined well-posedness for the fourth-order nonlinear Schrodinger equation related to the vortex filament. Commun. Part. Differ. Equ. 32(10–12), 1493–1510 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Maeda, M., Segata, J.: Existence and stability of standing waves of fourth order nonlinear Schrodinger type equation related to vortex filament. Funkcial. Ekvac. 54(1), 1–14 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kenig, C.E., Ponce, G., Vega, L.: On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106(3), 617–633 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Matania, B.-A., Herbert, K., Jean-Claude, S.: Dispersion estimates for fourth order Schrdinger equations. C. R. Acad. Sci. Paris Ser. I 330, 87–92 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kenig, C.E., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9(2), 573–603 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of SciencesLebanese University HadatBeirutLebanon
  2. 2.RIMSKyoto UniversityKyotoJapan
  3. 3.Institut Denis PoissonUniversité de Tours, Université d’Orléans, CNRSToursFrance

Personalised recommendations