Advertisement

Functional-analytic existence results for an integral equation in geophysics

  • Yanjuan Yang
Article
  • 63 Downloads

Abstract

We study a model in a deep way for arctic gyre flows which are uniform in the azimuthal direction. Such a model is transformed to a nonlinear integral equation on infinite-interval. By functional-analytic techniques, we investigate the existence of solutions of the integral equation with general nonlinear oceanic vorticities.

Keywords

Functional-analytic approach Nonlinear integral equations Geophysical flows 

Mathematics Subject Classification

45G99 58J32 76B03 

Notes

Acknowledgements

The author would like to show her great thanks to Professor Jifeng Chu for his valuable suggestions and useful discussions. This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2017B715X14) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0508).

References

  1. 1.
    Chu, J.: On a differential equation arising in geophysics. Monatsh. Math. (2017).  https://doi.org/10.1007/s00605-017-1087-1 Google Scholar
  2. 2.
    Chu, J.: On a nonlinear model for arctic gyres. Ann. Mat. Pura Appl. 4(197), 651–659 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chu, J.: On a nonlinear integral equation for the ocean flow in arctic gyres. Q. Appl. Math. 3, 489–498 (2018)zbMATHGoogle Scholar
  4. 4.
    Chu, J.: Monotone solutions of a nonlinear differential equation for geophysical fluid flows. Nonlinear Anal. 166, 144–153 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chu, J.: On an infinite-interval boundary-value problem in geophysics. Monatsh. Math. (2018).  https://doi.org/10.1007/s00605-017-1153-8 Google Scholar
  6. 6.
    Constantin, A.: Nonlinear water waves with applications to wave–current interactions and tsunamis. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)Google Scholar
  7. 7.
    Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res.-Oceans 117, C05029 (2012)CrossRefGoogle Scholar
  8. 8.
    Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)CrossRefGoogle Scholar
  9. 9.
    Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)CrossRefGoogle Scholar
  10. 10.
    Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the equatorial undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1935–1945 (2016)CrossRefGoogle Scholar
  13. 13.
    Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46, 3585–3594 (2016)CrossRefGoogle Scholar
  14. 14.
    Constantin, A., Johnson, R.S.: Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Proc. R. Soc. Lond. A 473, 20170063 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Constantin, A., Monismith, S.G.: Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511–528 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Constantin, A., Strauss, W., Varvaruca, E.: Global bifurcation of steady gravity water waves with critical layers. Acta Math. 217, 195–262 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ewing, J.A.: Wind, wave and current data for the design of ships and offshore structures. Mar. Struct. 3, 421–459 (1990)CrossRefGoogle Scholar
  18. 18.
    Garrison, T.: Essentials of Oceanography. National Geographic Society/Cengage Learning, Stamford (2014)Google Scholar
  19. 19.
    Henry, D.: Steady periodic waves bifurcating for fixed-depth rotational flows. Q. Appl. Math. 71, 455–487 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Henry, D.: Large amplitude steady periodic waves for fixed-depth rotational flows. Commun. Partial Differ. Equ. 38, 1015–1037 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Henry, D.: Equatorially trapped nonlinear water waves in a \(\beta \)-plane approximation with centripetal forces. J. Fluid Mech. 804, R1 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Marynets, K.: A weighted Sturm-Liouville problem related to ocean flows. J. Math. Fluid Mech. 20, 929–935 (2018)CrossRefGoogle Scholar
  24. 24.
    Sanjurjo, A.R., Kluczek, M.: Mean flow properties for equatorially trapped internal water wave–current interactions. Appl. Anal. 96, 2333–2345 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Viudez, A., Dritschel, D.G.: Vertical velocity in mesoscale geophysical flows. J. Fluid Mech. 483, 199–223 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications, I. Fixed-Point Theorems, translated from the German by Peter R. Wadsack. Springer, New York (1986)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, College of ScienceHohai UniversityNanjingChina

Personalised recommendations