Some properties of universal Dirichlet series

  • A. MouzeEmail author


We establish some properties of universal Dirichlet series. In particular we give a new estimate on the growth of their coefficients. As a consequence we obtain an information about the admissible size of coefficients of Dirichlet polynomials that approximate a given entire function on a compact set. Moreover we prove that, for all \(\alpha >-1\), the sequence of Riesz means \(\left( \left( \sum _{k=1}^nk^{\alpha }\right) ^{-1}\sum _{k=1}^n k^{\alpha }D_k(f)\right) \) of partial sums of an universal Dirichlet series f is automatically universal. Finally we show that the Dirichlet series satisfying the universal approximation property with respect to every compact set K (with connected complement) contained in a strip \(\{z\in {\mathbb {C}}:\sigma \le \mathfrak {R}(z)\le 0\}\) are not necessarily universal in the left half-plane \(\{z\in {\mathbb {C}}:\mathfrak {R}(z)\le 0\}\).


Universal Dirichlet series Boundary behavior of Dirichlet series Over-convergence Approximation in the complex domain 

Mathematics Subject Classification

30K10 30E10 


  1. 1.
    Apostol, T.M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976)Google Scholar
  2. 2.
    Aron, R.M., Bayart, F., Gauthier, P.M., Maestre, M., Nestoridis, V.: Dirichlet approximation and universal Dirichlet series. Proc. Am. Math. Soc. 145(10), 4449–4464 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bayart, F.: Topological and algebraic genericity of divergence and universality. Stud. Math. 167, 161–181 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bayart, F.: Boundary behavior and Cesàro means of universal Taylor series. Rev. Mat. Comput. 19(1), 235–247 (2006)zbMATHGoogle Scholar
  5. 5.
    Bayart, F., Grosse-Erdmann, K.-G., Nestoridis, V., Papadimitropoulos, C.: Abstract theory of universal series and applications. Proc. Lond. Math. Soc. 96, 417–463 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Charpentier, S., Mouze, A.: Universal Taylor series and summability. Rev. Mat. Complut. 28(1), 153–167 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chui, C.K., Parnes, M.N.: Approximation by overconvergence of power series. J. Math. Anal. Appl. 36, 693–696 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Demanze, O., Mouze, A.: Growth of coefficients of universal Dirichlet series. Ann. Polon. Math. 91(1), 11–23 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gardiner, S.J., Manolaki, M.: Boundary behaviour of Dirichlet series with applications to universal series. Bull. Lond. Math. Soc. 48(5), 735–744 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gauthier, P.M.: Universally overconvergent power series via the Riemann zeta-function. Can. Math. Bull. 56(3), 544–550 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kahane, J.-P., Melas, A.: Restricted universality of power series. Bull. Lond. Math. Soc. 33(5), 543–552 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Katsoprinakis, E.S.: Coincidence of some classes of universal functions. Rev. Mat. Comput. 22(2), 427–445 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Luh, W.: Approximation analytischer Funktionen durch überkonvergente Potenzreihen und deren matrix-transformierten. Mitt. Math. Sem. Giessen 88, 1–56 (1970)zbMATHGoogle Scholar
  14. 14.
    Melas, A., Nestoridis, V., Papadoperakis, I.: Growth of coefficients of universal Taylor series and comparison of two classes of functions. J. Anal. Math. 73, 187–202 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mouze, A.: Universality and summability of Dirichlet series. Complex Var. Elliptic Equ. 54(1), 57–70 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mouze, A., Munnier, V.: Polynomial inequalities and universal Taylor series. Math. Z. 284(3–4), 919–946 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nestoridis, V.: Universal Taylor series. Ann. Inst. Fourier (Grenoble) 46(5), 1293–1306 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Voronin, S.M.: On the distribution of nonzero values of the Riemann \(\zeta \)-function. Proc. Steklov Inst. Math. 128, 153–175 (1972). [translation from Trudy Mat. Inst. Steklov 128(1972), 131–150 (1972)]MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Paul Painlevé, UMR 8524Villeneuve d’Ascq CedexFrance
  2. 2.École Centrale de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations