Advertisement

Monatshefte für Mathematik

, Volume 188, Issue 1, pp 131–162 | Cite as

The Cauchy problem for a combustion model in a porous medium with two layers

  • J. C. da Mota
  • M. M. SantosEmail author
  • R. A. Santos
Article
  • 59 Downloads

Abstract

We prove the existence of local and global in time solutions of the Cauchy problem for a combustion model in a porous medium with two layers. The model is a system of four equations, consisting of two nonlinear reaction–convection–diffusion equations coupled with two ordinary differential equations, with the coupling occurring in both the reaction functions and in the differential operator coefficients. To obtain the local solution, we first construct an iteration scheme of approximate solutions to the system. Using the continuous dependence of solutions for parabolic equations with respect to the coefficients of the equations, we show that the constructed iteration scheme contains a sequence which converges to a local solution of the system, under the assumption that the initial data are Lipschitz continuous, bounded and non negative. We show that this solution can be extended globally, if the initial data are additionally in the Lebesgue space \(L^p\), for some \(p\in (1,\infty )\).

Keywords

Reaction–diffusion system Combustion model Iterative monotone method Parametrix method Auxiliary functions 

Mathematics Subject Classification

35K15 35K45 35K57 35K60 80A25 

References

  1. 1.
    Chueh, K.N., Conley, C.C., Smoller, J.A.: Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26(2), 373–392 (1977)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Da Mota, J.C., Santos, M.M.: An application of the monotone iterative method to a combustion problem in porous media. Nonlinear Anal. Real World Appl. 12, 1192–1201 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Da Mota, J.C., Schecter, S.: Combustion fronts in a porous medium with two layers. J. Dyn. Differ. Equ. 18(3), 615–665 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)Google Scholar
  5. 5.
    Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)zbMATHGoogle Scholar
  6. 6.
    Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley, New York (1999)zbMATHGoogle Scholar
  7. 7.
    Friedman, A.: Partial Differential Equations of Parabolic Type. Dover Publications, New York (2008)Google Scholar
  8. 8.
    Il’IN, A.M., Kalashnikov, A.S., Oleinik, O.A.: Linear equations of the second order of parabolic type. Russ. Math. Surv. 17(1), 1–143 (1962)CrossRefGoogle Scholar
  9. 9.
    Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type (translated from Russian by S. Smith). American Mathematical Society, Providence (1968)CrossRefGoogle Scholar
  10. 10.
    Oleinik, O.A., Kruzhkov, S.N.: Quasi-linear second-order parabolic equations with many independent variables. Russ. Math. Surv. 16(5), 105–146 (1961)CrossRefGoogle Scholar
  11. 11.
    Oleinik, O.A., Venttsel’, T.D.: Cauchy’s problem and the first boundary problem for a quasilinear equation of parabolic type (Russian). Doklady Akad. Nauk SSSR (N.S.) 97, 605–608 (1954)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Oleinik, O.A., Venttsel’, T.D.: The first boundary problem and the Cauchy problem for quasi-linear equations of parabolic type (Russian). Math. Sb. N.S. 41(83), 105–128 (1957)zbMATHGoogle Scholar
  13. 13.
    Olver, F.W.J.: Asymptotics and Special Functions. A K Peters, Natick (1974)zbMATHGoogle Scholar
  14. 14.
    Rothe, F.: Global solutions of reaction-diffusion systems. In: Dold, A., Eckmann, B. (eds.) Lecture Notes in Mathematics. Springer, Berlin (1984)Google Scholar
  15. 15.
    Smoller, J.: Shock Waves and Reaction–Diffusion Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, 2nd edn. Springer, New York (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Departamento de MatemáticaIME-UFG (Instituto de Matemática e Estatística–Universidade Federal de Goiás)GoiâniaBrazil
  2. 2.Departamento de MatemáticaIMECC-UNICAMP (Instituto de Matemática, Estatística e Computação Científica–Universidade Estadual de Campinas)CampinasBrazil

Personalised recommendations