Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Oxidized carbon nanotubes as sorbent for miniaturized solid-phase extraction of progestins from environmental water samples prior to their determination by HPLC-UV

  • 78 Accesses

Abstract

A solid-phase extraction method is presented for micro-extraction of three progestins (levonorgestrel, 19-norethisterone acetate and medroxyprogesterone acetate) from water samples. A mini-column was packed with 60 mg of oxidized multiwalled carbon nanotubes and coupled to a flow injection assembly. The extraction parameters, such as washing solution, eluent type, eluent volume, flow rate and sample volume, were optimized. Separation and determination were performed by HPLC with UV detection. The method has a good linear range (0.90–9.0 μg L−1), acceptable limits of detection (0.05–0.14 μg L−1) and low RSDs (0.8–4.6%). Attractive features of the method include low consumption of organic solvents and preconcentration factors of up to 100. The method was applied to analyze stream, underground and effluent water samples, and recoveries between 74 and 121% were obtained.

Schematic representation of the flow injection assembly couples to an ox-MWCNTs extraction column used to perform the solid phase extraction procedure of progestins in environmental water samples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Anastas N. Overview of chemicals of emerging concern. To be presented at PCWWA November meeting, Halifax, MA, November 18, 2015

  2. 2.

    Naidu R, Arias Espana V, Liu Y, Jit J (2016) Emerging contaminants in the environment: risk-based analysis for better management. Chemosphere 154:350–357. https://doi.org/10.1016/j.chemosphere.2016.03.068

  3. 3.

    Yang L, Luan T, Lan C (2006) Solid-phase microextraction with on-fiber silylation for simultaneous determinations of endocrine disrupting chemicals and steroid hormones by gas chromatography–mass spectrometry. J Chromatogr A 1104:23–32. https://doi.org/10.1016/j.chroma.2005.11.108

  4. 4.

    Scaglia H, Chichizola C, Franconi MC, Ludueña B, Mastandrea C, Scaglia J (2009) Disruptores endocrinos. Composición química, mecanismo de acción y efecto sobre el eje reproductivo. Reproducción 24:74–86

  5. 5.

    Schindler AE, Campagnoli C, Druckmann R, Huber J, Pasqualini JR, Schweppe KW, Thijssen JHH (2003) Classification and pharmacology of progestins. Maturitas 46:7–16. https://doi.org/10.1016/j.maturitas.2003.09.014

  6. 6.

    Fent K (2015) Progestins as endocrine disrupters in aquatic ecosystems: concentrations, effects and risk assessment. Environ Int 84:115–130. https://doi.org/10.1016/j.envint.2015.06.012

  7. 7.

    Tomsíková H, Aufartová J, Solich P, Sosa-Ferrera Z, Santana-Rodríguez JJ, Novákova L (2012) High-sensitivity analysis of female-steroid hormones in environmental samples. Trends Anal Chem 34:35–58. https://doi.org/10.1016/j.trac.2011.11.008

  8. 8.

    Majors RE (2010) Solid-phase extraction. In: Pawliszyn J, Lord HL (eds) Handbook of Sample Preparation. Wiley & Sons, Inc, pp 53–79

  9. 9.

    Aufartová J, Torres-Padrón ME, Sosa-Ferrera Z, Solich P, Santana-Rodrguez JJ (2012) Optimisation of an in-tube solid phase microextraction method coupled with HPLC for determination of some oestrogens in environmental liquid samples using different capillary columns. Int J Environ Anal Chem 92:382–396. https://doi.org/10.1080/03067319.2011.585714

  10. 10.

    Vakondios N, Mazioti AA, Koukouraki EE, Diamadopoulos E (2016) An analytical method for measuring specific endocrine disruptors in activated sludge (biosolids) using solid phase microextraction-gas chromatography. J Environ Chem Eng 4:1910–1917. https://doi.org/10.1016/j.jece.2016.03.018

  11. 11.

    Liu SS, Ying GG, Liu S, Lai HJ, Chen ZF, Pan CG, Zhao JL, Chen J (2014) Analysis of 21 progestagens in various matrices by ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with diverse sample pretreatment. Anal Bioanal Chem 406:7299–7311. https://doi.org/10.1007/s00216-014-8146-4

  12. 12.

    Shen X, Chang H, Sun D, Wang L, Wu F (2018) Trace analysis of 61 natural and synthetic progestins in river water and sewage effluents by ultra-high performance liquid chromatography tandem mass spectrometry. Water Res 133:142–152. https://doi.org/10.1016/j.watres.2018.01.030

  13. 13.

    Houtman CJ, Broek R, Brouwer A (2018) Steroid hormonal bioactivities, culprit natural and synthetic hormones and other emerging contaminants in waste water measured using bioassays and UPLC-tQ-MS. Sci Total Environ 630:1492–1501. https://doi.org/10.1016/j.scitotenv.2018.02.273

  14. 14.

    Huysman S, Van Meulebroek L, Vanryckeghem F, Van Langenhove H, Demeestere K, Vanhaecke L (2017) Development and validation of an ultra-high performance liquid chromatographic high resolution Q-Orbitrap mass spectrometric method for the simultaneous determination of steroidal endocrine disrupting compounds in aquatic matrices. Anal Chim Acta 984:140–150. https://doi.org/10.1016/j.aca.2017.07.001

  15. 15.

    Golovko O, Šauer P, Fedorova G, Kocour Kroupová H, Grabic R (2018) Determination of progestogens in surface and waste water using SPE extraction and LC- APCI/APPI-HRPS. Sci Total Environ 621:1066–1073. https://doi.org/10.1016/j.scitotenv.2017.10.120

  16. 16.

    Sun L, Yong W, Chu X, Lin JM (2009) Simultaneous determination of 15 steroidal oral contraceptives in water using solid-phase disk extraction followed by high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1216:5416–5423. https://doi.org/10.1016/j.chroma.2009.05.041

  17. 17.

    Ulusoy H, Yılmaz E, Soylak M (2019) Magnetic solid phase extraction of trace paracetamol and caffeine in synthetic urine and wastewater samples by a using core shell hybrid material consisting of graphene oxide/multiwalled carbon nanotube/Fe3O4/SiO2. Microchem J 145:843–885. https://doi.org/10.1016/j.microc.2018.11.056

  18. 18.

    Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśni J (2016) Modern trends in solid phase extraction: new sorbent media. Trends Anal Chem 77:23–43. https://doi.org/10.1016/j.trac.2015.10.010

  19. 19.

    Soylak M, Emre Unsal Y (2010) Chromium and iron determinations in food and herbal plant samples by atomic absorption spectrometry after solid phase extraction on single-walled carbon nanotubes (SWCNTs) disk. Food Chem Toxicol 48:1511–1515. https://doi.org/10.1016/j.fct.2010.03.017

  20. 20.

    Sahmetlioglu E, Yilmaz E, Aktas E, Soylak M (2014) Polypyrrole/multi-walled carbon nanotube composite for the solid phase extraction of lead(II) in water samples. Talanta 119:447–451. https://doi.org/10.1016/j.talanta.2013.11.044

  21. 21.

    Dil EA, Asfaram A, Sadeghfar F (2019) Magnetic dispersive micro-solid phase extraction with the CuO/ZnO@Fe3O4-CNTs nanocomposite sorbent for the rapid pre-concentration of chlorogenic acid in the medical extract of plants, food, and water samples. Analyst 144:2684–2695. https://doi.org/10.1039/c8an02484g

  22. 22.

    Ebrahimpour B, Yamini Y, Seidi S, Tajik M (2015) Nano polypyrrole-coated magnetic solid phase extraction followed by dispersive liquid phase microextraction for trace determination of megestrol acetate and levonorgestrel. Anal Chim Acta 885:98–105. https://doi.org/10.1016/j.aca.2015.05.025

  23. 23.

    Es’haghi Z, Nezhadali A, Khatibi AD (2016) Magnetically responsive polycaprolactone nanoparticles for progesterone screening in biological and environmental samples using gas chromatography. Anal Bioanal Chem 408:37–49. https://doi.org/10.1007/s00216-016-9650-5

  24. 24.

    Vasconcelos I, Fernandes C (2017) Magnetic solid phase extraction for determination of drugs in biological matrices. Trends Anal Chem 89:41–52. https://doi.org/10.1016/j.trac.2016.11.011

  25. 25.

    Su R, Wang X, Xu X, Wang Z, Li D, Zhao X, Li X, Zhang H, Yu A (2011) Application of multiwall carbon nanotubes-based matrix solid phase dispersion extraction for determination of hormones in butter by gas chromatography mass spectrometry. J Chromatogr A 1218:5047–5054. https://doi.org/10.1016/j.chroma.2011.05.088

  26. 26.

    Cerdà V, Ferrer L, Avivar J, Cerdà A (2014) A. Flow analysis. A practical guide, 1st edn. Elsevier Science

  27. 27.

    Valcárcel M, Cárdenas S (2005) Vanguard-rearguard analytical strategies. Trends Anal Chem 24:67–74. https://doi.org/10.1016/j.trac.2004.07.016

  28. 28.

    Xiong X, Ouyang J, Baeyens WRG, Delanghe JR, Shen X, Yang Y (2006) Enhanced separation of purine and pyrimidine bases using carboxylic multiwalled carbon nanotubes as additive in capillary zone electrophoresis. Electrophoresis 27:3243–3253. https://doi.org/10.1002/elps.200500870

  29. 29.

    AOAC Peer-Verified Methods Program, Manual on policies and procedures, Arlington, VA, USA, 1998

  30. 30.

    Augusto F, Hantao L, Mogollón N, Braga S (2013) New materials and trends in sorbents for solid-phase extraction. Trends Anal Chem 43:14–23. https://doi.org/10.1016/j.trac.2012.08.012

  31. 31.

    Li Q, Wang X, Yuan D (2009) Solid-phase extraction of polar organophosphorous pesticides from aqueous samples with oxidized carbon nanotubes. J Environ Monit 11:439–444. https://doi.org/10.1039/b816271a

  32. 32.

    El-Sheikh AH, Insisi AA, Sweileh JA (2007) Effect of oxidation and dimensions of multi- walled carbon nanotubes on solid phase extraction and enrichment of some pesticides from environmental waters prior to their simultaneous determination by high performance liquid chromatography. J Chromatogr A 1164:25–32. https://doi.org/10.1016/j.chroma.2007.07.009

  33. 33.

    Herrera-Herrera AV, Ravelo-Pérez LM, Hernández-Borges J, Afonso MM, Palenzuela JA, Roríguez-Delgado MA (2011) Oxidized multi-walled carbon nanotubes for the dispersive solid- phase extraction of quinolone antibiotics from water samples using capillary electrophoresis and large volume sample stacking with polarity switching. J Chromatogr A 1218:5352–5361. https://doi.org/10.1016/j.chroma.2011.06.031

  34. 34.

    Chen S, Liu C, Yang M, Lu D, Zhu L, Wang Z (2009) Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry. J Hazard Mater 170:247–251. https://doi.org/10.1016/j.jhazmat.2009.04.104

  35. 35.

    Herrero-Latorre C, Barciela-García J, García-Martín S, Pena-Crecente RM (2018) Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: a review. Anal Chim Acta 1002:1–17. https://doi.org/10.1016/j.aca.2017.11.042

  36. 36.

    Massart DL (1997) Handbook of Chemometrics and Qualimetrics, 1st edn. Elsevier Science

Download references

Acknowledgments

Authors gratefully acknowledge to Universidad Nacional del Sur (PGI 24/ZQ17) and Comisión Nacional de Investigaciones Científicas y Técnicas (CONICET).

Author information

Correspondence to Carolina C. Acebal.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 177 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aguinaga Martínez, M.V., Llamas, N.E., Ávila Orozco, F.D. et al. Oxidized carbon nanotubes as sorbent for miniaturized solid-phase extraction of progestins from environmental water samples prior to their determination by HPLC-UV. Microchim Acta 187, 153 (2020). https://doi.org/10.1007/s00604-020-4116-z

Download citation

Keywords

  • Emerging contaminants
  • Hormones
  • Pharmaceuticals
  • Carbon-based sorbents
  • Nanoparticles
  • Sample preparation
  • Flow injection analysis
  • HPLC-UV