Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

One-pot synthesis of green-emitting gold nanoclusters as a fluorescent probe for determination of 4-nitrophenol

Abstract

A hydrothermal method was applied to the synthesis of green-emitting gold nanoclusters (Au NCs) which are shown to be viable fluorescent probes for 4-nitrophenol (4-NP). The Au NCs were prepared by using thiol-β-cyclodextrin as a template. Under 365 nm excitation, their green fluorescence has a peak at 502 nm, with a narrow emission bandwidth of only 30 nm. The fluorescence and composition of the Au NCs were characterized and the mechanism of the nanocluster formation is discussed. Due to host-guest recognition of β-cyclodextrin and 4-NP, fluorescence is quenched. The probe can selectively recognize 4-NP among other nitrophenols. A fluorometric and colorimetric assay was developed for 4-NP that works in the 0.1 to 100 μM concentration range and has a detection limit of 90 nM (at 3σ).

Schematic representation of hydrothermal synthesis of green-emitting gold nanoclusters using thiol-β-cyclodextrin. Fluorescence is quenched and the absorption of the nanoclusters is increases in the presence of 4-nitrophenol.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2(3):343–362. https://doi.org/10.1039/b9nr00160c

  2. 2.

    Zeng C, Chen Y, Li G, Jin R (2014) Synthesis of a Au44(SR)28 nanocluster: structure prediction and evolution from Au28(SR)20, Au36(SR)24 to Au44(SR)28. Chem Commun 50(1):55–57. https://doi.org/10.1039/C3CC47089J

  3. 3.

    Yu Y, Luo Z, Chevrier DM, Leong DT, Zhang P, D-e J, Xie J (2014) Identification of a highly luminescent Au22(SG)18 Nanocluster. J Am Chem Soc 136:1246–1249. https://doi.org/10.1021/ja411643u

  4. 4.

    Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116(18):10346–10413. https://doi.org/10.1021/acs.chemrev.5b00703

  5. 5.

    Peng H, Jian M, Deng H, Wang W, Huang Z, Huang K, Liu A, Chen W (2017) Valence states effect on Electrogenerated Chemiluminescence of gold nanocluster. ACS Appl Mater Interfaces 9(17):14929–14934. https://doi.org/10.1021/acsami.7b02446

  6. 6.

    Hu X, Zheng Y, Zhou J, Fang D, Jiang H, Wang X (2018) Silver-assisted thiolate ligand exchange induced photoluminescent boost of gold nanoclusters for selective imaging of intracellular glutathione. Chem Mater 30(6):1947–1955. https://doi.org/10.1021/acs.chemmater.7b04926

  7. 7.

    Weng B, Lu K-Q, Tang Z, Chen HM, Xu Y-J (2018) Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat Commun 9(1):1543. https://doi.org/10.1038/s41467-018-04020-2

  8. 8.

    Dou Y, Yang X (2013) Novel high-sensitive fluorescent detection of deoxyribonuclease I based on DNA-templated gold/silver nanoclusters. Anal Chim Acta 784(0):53–58. https://doi.org/10.1016/j.aca.2013.04.038

  9. 9.

    Liang S, Kuang Y, Ma F, Chen S, Long Y (2016) A sensitive spectrofluorometric method for detection of berberine hydrochloride using Ag nanoclusters directed by natural fish sperm DNA. Biosens Bioelectron 85:758–763. https://doi.org/10.1016/j.bios.2016.05.070

  10. 10.

    Xie JP, Zheng YG, Ying JY (2010) Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chem Commun 46(6):961–963. https://doi.org/10.1039/b920748a

  11. 11.

    Chen W, Tu X, Guo X (2009) Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem Commun:1736–1738. https://doi.org/10.1039/b820145e

  12. 12.

    Bai X, Xu S, Wang L (2018) Full-range pH stable Au-clusters in nanogel for confinement-enhanced emission and improved sulfide sensing in living cells. Anal Chem 90:3270–3275. https://doi.org/10.1021/acs.analchem.7b04785

  13. 13.

    Li Z, Liu R, Xing G, Wang T, Liu S (2017) A novel fluorometric and colorimetric sensor for iodide determination using DNA-templated gold/silver nanoclusters. Biosens Bioelectron 96:44–48. https://doi.org/10.1016/j.bios.2017.01.005

  14. 14.

    Zhang L, Song W, Liang RP, Qiu JD (2016) Simultaneous determination of protein kinase a and casein kinase II by dual-color peptide biomineralized metal Nanoclusters. Anal Chem 88(23):11460–11467. https://doi.org/10.1021/acs.analchem.6b02522

  15. 15.

    Duan Y, Duan R, Liu R, Guan M, Chen W, Ma J, Chen M, Du B, Zhang Q (2018) Chitosan-stabilized self-assembled fluorescent gold Nanoclusters for cell imaging and biodistribution in vivo. ACS Biomater Sci Eng 4:1055–1063. https://doi.org/10.1021/acsbiomaterials.7b00975

  16. 16.

    Zhang P, Lan J, Wang Y, Xiong ZH, Huang CZ (2015) Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters. Biomaterials 36:26–32. https://doi.org/10.1016/j.biomaterials.2014.08.026

  17. 17.

    Gao Y, Shao N, Zeng XC (2008) Ab initio study of thiolate-protected Au102 nanocluster. ACS Nano 2(7):1497–1503. https://doi.org/10.1021/nn800268w

  18. 18.

    Luo QJ, Li ZG, Lai JH, Li FQ, Qiu P, Wang XL (2017) An on–off–on gold nanocluster-based fluorescent probe for sensitive detection of organophosphorus pesticides. RSC Adv 7(87):55199–55205. https://doi.org/10.1039/c7ra11835j

  19. 19.

    Jiang H, Su X, Zhang Y, Zhou J, Fang D, Wang X (2016) Unexpected thiols triggering photoluminescent enhancement of cytidine stabilized Au nanoclusters for sensitive assays of glutathione reductase and its inhibitors screening. Anal Chem 88(9):4766–4771. https://doi.org/10.1021/acs.analchem.6b00112

  20. 20.

    Bain D, Maity S, Paramanik B, Patra A (2018) Core-size dependent fluorescent gold nanoclusters and ultrasensitive detection of Pb2+ ion. ACS Sustain Chem Eng 6(2):2334–2343. https://doi.org/10.1021/acssuschemeng.7b03794

  21. 21.

    Kawasaki H, Hamaguchi K, Osaka I, Arakawa R (2011) ph-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv Funct Mater 21(18):3508–3515. https://doi.org/10.1002/adfm.201100886

  22. 22.

    Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance. ACS Nano 4(7):4001–4010. https://doi.org/10.1021/nn100939n

  23. 23.

    Chen G, Jiang M (2011) Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40(5):2254–2266. https://doi.org/10.1039/c0cs00153h

  24. 24.

    Cao S, An X (2018) In-situ synthesis of fluorescent Ag clusters using β-cyclodextrins cavity as templates. Mater Lett 216:170–172. https://doi.org/10.1016/j.matlet.2017.12.086

  25. 25.

    Halawa MI, Wu F, Fereja TH, Lou B, Xu G (2018) One-pot green synthesis of supramolecular β-cyclodextrin functionalized gold nanoclusters and their application for highly selective and sensitive fluorescent detection of dopamine. Sensors Actuators B Chem 254:1017–1024. https://doi.org/10.1016/j.snb.2017.07.201

  26. 26.

    Wang Y, Guo H, Zhang Y, Tai F, Wang Y, Dong Q, Nie Y, Zhao Q, Wong W-Y (2018) Achieving highly water-soluble and luminescent gold nanoclusters modified by β–cyclodextrin as multifunctional nanoprobe for biological applications. Dyes Pigments 157:359–368. https://doi.org/10.1016/j.dyepig.2018.05.015

  27. 27.

    Gupta VK, Atar N, Yola ML, Ustundag Z, Uzun L (2014) A novel magnetic Fe@au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217. https://doi.org/10.1016/j.watres.2013.09.027

  28. 28.

    Xu X, Liu Z, Zhang X, Duan S, Xu S, Zhou C (2011) β-Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers. Electrochim Acta 58:142–149. https://doi.org/10.1016/j.electacta.2011.09.015

  29. 29.

    Oturan MA, Peiroten J, Chartrin P, Acher AJ (2000) Complete destruction ofp-nitrophenol in aqueous medium by Electro-Fenton method. Environ Sci Technol 34(16):3474–3479. https://doi.org/10.1021/es990901b

  30. 30.

    Manera M, Miro M, Estela JM, Cerda V (2007) Multi-syringe flow injection solid-phase extraction system for on-line simultaneous spectrophotometric determination of nitro-substituted phenol isomers. Anal Chim Acta 582(1):41–49. https://doi.org/10.1016/j.aca.2006.08.063

  31. 31.

    Yang L, Fan S, Deng G, Li Y, Ran X, Zhao H, Li CP (2015) Bridged beta-cyclodextrin-functionalized MWCNT with higher supramolecular recognition capability: the simultaneous electrochemical determination of three phenols. Biosens Bioelectron 68:617–625. https://doi.org/10.1016/j.bios.2015.01.059

  32. 32.

    Silva PS, Gasparini BC, Magosso HA, Spinelli A (2014) Gold nanoparticles hosted in a water-soluble silsesquioxane polymer applied as a catalytic material onto an electrochemical sensor for detection of nitrophenol isomers. J Hazard Mater 273:70–77. https://doi.org/10.1016/j.jhazmat.2014.03.032

  33. 33.

    Anh NTN, R-a D (2018) One-step synthesis of size-tunable gold@sulfur-doped graphene quantum dot nanocomposites for highly selective and sensitive detection of Nanomolar 4-Nitrophenol in aqueous solutions with complex matrix. ACS Appl Nano Mater 1(5):2153–2163. https://doi.org/10.1021/acsanm.8b00210

  34. 34.

    Liu J, Chen H, Lin Z, Lin J-M (2010) Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-Nitrophenol in tap water. Anal Chem 82(17):7380–7386. https://doi.org/10.1021/ac101510b

  35. 35.

    Zhang Z, Zhou J, Liu Y, Tang J, Tang W (2015) Cyclodextrin capped CdTe quantum dots as versatile fluorescence sensors for nitrophenol isomers. Nanoscale 7(46):19540–19546. https://doi.org/10.1039/C5NR06073G

  36. 36.

    Kubendhiran S, Sakthivel R, Chen S-M, Mutharani B, Chen T-W (2018) Innovative strategy based on a novel carbon-black−β-cyclodextrin nanocomposite for the simultaneous determination of the anticancer drug flutamide and the environmental pollutant 4-Nitrophenol. Anal Chem 90(10):6283–6291. https://doi.org/10.1021/acs.analchem.8b00989

  37. 37.

    Fischer J, Barek J, Wang J (2006) Separation and detection of nitrophenols at capillary electrophoresis microchips with amperometric detection. Electroanalysis 18(2):195–199. https://doi.org/10.1002/elan.200503393

  38. 38.

    Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131(3):888–889. https://doi.org/10.1021/ja806804u

  39. 39.

    Chaudhari K, Xavier PL, Pradeep T (2011) Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS Nano 5(11):8816–8827. https://doi.org/10.1021/nn202901a

  40. 40.

    Wu ZK, Jin RC (2010) On the Ligand's role in the fluorescence of gold nanoclusters. Nano Lett 10(7):2568–2573. https://doi.org/10.1021/nl101225f

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21565030), Program for Excellent Young Talents of Yunnan University and National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University).

Author information

Correspondence to Jian Ling or Qiu-E Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1082 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wen, Q., Liu, A. et al. One-pot synthesis of green-emitting gold nanoclusters as a fluorescent probe for determination of 4-nitrophenol. Microchim Acta 187, 106 (2020). https://doi.org/10.1007/s00604-019-4090-5

Download citation

Keywords

  • Metal nanoclusters
  • Thiol-β-cyclodextrin
  • Host-guest recognition
  • Fluorometry
  • Colorimetry