Advertisement

Microchimica Acta

, 187:7 | Cite as

A composite prepared from MnO2 nanosheets and a deep eutectic solvent as an oxidase mimic for the colorimetric determination of DNA

  • Jing Chen
  • Yuzhi WangEmail author
  • Xiaoxiao Wei
  • Rui Ni
  • Jiaojiao Meng
  • Fangting Xu
  • Ziwei Liu
Original Paper
  • 41 Downloads

Abstract

A composite was fabricated from deep eutectic solvent and MnO2 nanosheets (DES/MnO2) and is shown to be a viable oxidase mimic. The property, morphology and composition of DES/MnO2 was characterized. DES/MnO2 displays oxidase-like activity and can oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) to form a blue product (oxTMB) with an absorption maximum at 652 nm. Due to the presence of the DES, the polyanionic and negatively charged DNA is easily adsorbed on the surface of the composite by hydrogen bonding and electrostatic interactions. This leads to the inhibition of the oxidase-mimicking activity of DES/MnO2. This finding was used to design a colorimetric method for the determination of DNA. The assay work in the 10–100 μg mL−1 DNA concentration range and has a detection limit of 0.37 μg mL−1. The inhibiting mechanism was further studied by zeta potential measurements, dynamic light scattering and transmission electron microscopy. The selectivity study shows the DES/MnO2-TMB system to be highly selective for DNA when compared with many proteins, carbohydrates, salts and amino acid. RNA, on the other hand, interferes. The real sample analysis result illustrates that the new method can be used for the detection of DNA in bovine whole blood.

Graphical abstract

A novel oxidase mimic based on deep eutectic solvent-functionalized MnO2 nanosheets was synthesized, which can directly catalyze oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB, colorless) to oxTMB (blue). A sensitive and convenient colorimetric strategy for visual detection of DNA was established through DES/MnO2-TMB sensing system.

Keywords

Sensing Adsorption Modulator 3,3′,5,5′-Tetramethylbenzidine Inhibition Bovine whole blood 

Notes

Acknowledgements

The authors greatly appreciate the financial supports by the National Natural Science Foundation of China (No.21675048) and Major Industrial Support Programs of Guizhou Province QKHZC[2019]2959.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

604_2019_4021_MOESM1_ESM.docx (8.7 mb)
ESM 1 (DOCX 8.67 mb)

References

  1. 1.
    Xu KJ, Wang YZ, Zhang HM, Yang Q, Wei X, Xu PL (2017) Solid-phase extraction of DNA by using a composite prepared from multiwalled carbon nanotubes, chitosan, Fe3O4 and a poly(ethylene glycol)-based deep eutectic solvent. Microchim Acta 184:4133–4140CrossRefGoogle Scholar
  2. 2.
    Li N, Wang YZ, Xu KJ, Wen Q, Ding XQ, Zhang HM (2016) High-performance of deep eutectic solvent based aqueous bi-phasic systems for the extraction of DNA. RSC Adv 6:84406–84414CrossRefGoogle Scholar
  3. 3.
    Xu PL, Wang YZ, Chen J, Wei XX, Xu W, Ni R (2018) A novel aqueous biphasic system formed by deep eutectic solvent and ionic liquid for DNA partitioning. Talanta 189:467–479CrossRefGoogle Scholar
  4. 4.
    Cao J, Chen L, Li M, Cao F, Zhao L, Su E (2018) Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities. Green Chem 20:1879–1886CrossRefGoogle Scholar
  5. 5.
    Farias FO, Passos H, Lima ÁS, Mafra MR, Coutinho JAP (2017) Is it possible to create ternary-like aqueous biphasic systems with deep eutectic solvents? ACS Sustain Chem Eng 5:9402–9411CrossRefGoogle Scholar
  6. 6.
    Ni R, Wang YZ, Wei XX, Chen J, Xu PL, Xu W (2019) Ionic liquid modified molybdenum disulfide and reduced graphene oxide magnetic nanocomposite for the magnetic separation of dye from aqueous solution. Anal Chim Acta 1054:47–58CrossRefGoogle Scholar
  7. 7.
    Xu KJ, Wang YZ, Li Y, Lin Y, Zhang HM, Zhou Y (2016) A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin. Anal Chim Acta 946:64–72CrossRefGoogle Scholar
  8. 8.
    Wang N, Zheng AQ, Liu X, Chen JJ, Yang T, Chen ML (2018) Deep eutectic solvent-assisted preparation of nitrogen/chloride-doped carbon dots for intracellular biological sensing and live cell imaging. ACS Appl Mater Interfaces 10:7901–7909CrossRefGoogle Scholar
  9. 9.
    Sha H, Zhang Y, Wang Y, Ke H, Xiong X, Jia N (2019) Electrochemiluminescence resonance energy transfer biosensor between the glucose functionalized MnO2 and g-C3N4 nanocomposites for ultrasensitive detection of concanavalin a. Biosens Bioelectron 124:59–65CrossRefGoogle Scholar
  10. 10.
    Song H, Zhao H, Zhang X, Xu Y, Cheng X, Gao S (2019) A hollow urchin-like α-MnO2 as an electrochemical sensor for hydrogen peroxide and dopamine with high selectivity and sensitivity. Microchim Acta 186:210CrossRefGoogle Scholar
  11. 11.
    Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184(2):323–342CrossRefGoogle Scholar
  12. 12.
    Wang Q, Pang H, Dong Y, Chi Y, Fu F (2018) Colorimetric determination of glutathione by using a nanohybrid composed of manganese dioxide and carbon dots. Microchim Acta 185:291CrossRefGoogle Scholar
  13. 13.
    Ge J, Xing K, Geng X, Hu YL, Shen XP, Zhang L (2018) Human serum albumin templated MnO2 nanosheets are oxidase mimics for colorimetric determination of hydrogen peroxide and for enzymatic determination of glucose. Microchim Acta 185:559CrossRefGoogle Scholar
  14. 14.
    Li J, Du B, Li Y, Wang Y, Wu D, Wei Q (2018) A turn-on fluorescent sensor for highly sensitive mercury(II) detection based on a carbon dot-labeled oligodeoxyribonucleotide and MnO2 nanosheets. New J Chem 42:1228–1234CrossRefGoogle Scholar
  15. 15.
    Yu J, Yang W, Xing S, Wang J, Han H, Zhang P (2019) Blended gold/MnO2@BSA nanoparticles for fluorometric and magnetic resonance determination of ascorbic acid. Microchim Acta 186:89CrossRefGoogle Scholar
  16. 16.
    He L, Lu Y, Wang F, Jing W, Chen Y, Liu Y (2018) Colorimetric sensing of silver ions based on glutathione-mediated MnO2 nanosheets. Sensors Actuators B Chem 254:468–474CrossRefGoogle Scholar
  17. 17.
    Song H, Wang Y, Wang G, Wei H, Luo S (2017) Ultrathin two-dimensional MnO2 nanosheet as a stable coreactant of 3,3′,5,5′-tetramethylbenzidine chromogenic substrate for visual and colorimetric detection of iron(II) ion. Microchim Acta 184:3399–3404CrossRefGoogle Scholar
  18. 18.
    Ge J, Cai R, Chen X, Wu Q, Zhang L, Jiang Y (2019) Facile approach to prepare HSA-templated MnO2 nanosheets as oxidase mimic for colorimetric detection of glutathione. Talanta 195:40–45CrossRefGoogle Scholar
  19. 19.
    Huang W, Deng Y, He Y (2017) Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system. Biosens Bioelectron 91:89–94CrossRefGoogle Scholar
  20. 20.
    Gan Y, Hu N, He C, Zhou S, Tu J, Liang T (2019) MnO2 nanosheets as the biomimetic oxidase for rapid and sensitive oxalate detection combining with bionic E-eye. Biosens Bioelectron 30:254–261CrossRefGoogle Scholar
  21. 21.
    Yang Q, Wang Y, Zhang H, Xu K, Wei X, Xu P (2017) A novel dianionic amino acid ionic liquid-coated PEG 4000 modified Fe3O4 nanocomposite for the magnetic solid-phase extraction of trypsin. Talanta 174:139–147CrossRefGoogle Scholar
  22. 22.
    Zhang H, Wang Y, Zhou Y, Xu K, Li N, Wen Q (2017) Aqueous biphasic systems containing PEG-based deep eutectic solvents for high-performance partitioning of RNA. Talanta 170:266–274CrossRefGoogle Scholar
  23. 23.
    Xu W, Wang Y, Wei X, Chen J, Xu P, Ni R (2019) Fabrication of magnetic polymers based on deep eutectic solvent for separation of bovine hemoglobin via molecular imprinting technology. Anal Chim Acta 1048:1–11CrossRefGoogle Scholar
  24. 24.
    Yan X, Song Y, Wu X, Zhu C, Su X, Du D (2017) Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale 9:2317–2323CrossRefGoogle Scholar
  25. 25.
    Qi L, Yan Z, Huo Y, Hai XM, Zhang ZQ (2017) MnO2 nanosheet-assisted ligand-DNA interaction-based fluorescence polarization biosensor for the detection of Ag+ ions. Biosens Bioelectron 87:566–571CrossRefGoogle Scholar
  26. 26.
    Lin L, Shi D, Li Q, Wang G, Zhang X (2016) Detection of T4 polynucleotide kinase based on a MnO2 nanosheet-3,3′,5,5′-tetramethylbenzidine (TMB) colorimetric system. Anal Methods 8:4119–4126CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Li Y, Zhang C, Zhang QF, Huang XA, Yang MD et al (2017) Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets[J]. Anal Bioanal Chem 409(20):4771–4778CrossRefGoogle Scholar
  28. 28.
    Wang HB, Li Y, Bai HY, Liu YM (2018) DNA-templated au nanoclusters and MnO2 sheets: a label-free and universal fluorescence biosensing platform. Sensors Actuators B Chem 259:204–210CrossRefGoogle Scholar
  29. 29.
    Wang C, Zhai W, Wang Y, Yu P, Mao LQ (2015) MnO2 nanosheets based fluorescent sensing platform with organic dyes as a probe with excellent analytical properties. Analyst 140(12):4021–4029CrossRefGoogle Scholar
  30. 30.
    Yang DP, Guo W, Cai Z, Chen YS, He XS, Huang CS, Zhuang JY, Jia NQ (2018) Highly sensitive electrochemiluminescence biosensor for cholesterol detection based on AgNPs-BSA-MnO2 nanosheets with superior biocompatibility and synergistic catalytic activity. Sensors Actuators B Chem 260:642–649CrossRefGoogle Scholar
  31. 31.
    Chen Q, Zhang L, Jiang F, Wang B, Lv T, Zeng ZC (2017) MnO2 microsphere absorbing Cy5-labeled single strand DNA probe serving as powerful biosensor for effective detection of mycoplasma ovipneumoniae. Sensors Actuators B Chem 244:1138–1144CrossRefGoogle Scholar
  32. 32.
    He D, He X, Wang K, Yang X, Yang XX, Li XC, Zou Z (2014) Nanometer-sized manganese oxide-quenched fluorescent oligonucleotides: an effective sensing platform for probing biomolecular interactions. Chem Commun 50(75):11049–11052CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Jing Chen
    • 1
    • 2
  • Yuzhi Wang
    • 1
    Email author
  • Xiaoxiao Wei
    • 1
  • Rui Ni
    • 1
  • Jiaojiao Meng
    • 1
  • Fangting Xu
    • 1
  • Ziwei Liu
    • 1
  1. 1.State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.College of Material and Chemical EngineeringTongren UniversityTongrenPeople’s Republic of China

Personalised recommendations