Microchimica Acta

, 186:835 | Cite as

A system composed of polyethylenimine-capped upconversion nanoparticles, copper(II), hydrogen peroxide and 3,3′,5,5′-tetramethylbenzidine for colorimetric and fluorometric determination of glyphosate

  • Zhengquan Liu
  • Lan Yang
  • Arumugam Selva Sharma
  • Min Chen
  • Quansheng ChenEmail author
Original Paper


A dual (colorimetric and fluorometric) method is described for sensitive and selective determination of the herbicide glyphosate. It is based on the use of a system composed of polyethylenimine-capped NaGdF4:Yb,Er upconversion nanoparticles (UCNPs), copper(II) ions, hydrogen peroxide and 3,3′,5,5′-tetramethylbenzidine. The physicochemical and photophysical properties of the polyethylenimine-capped UCNPs were characterized by various spectroscopic and microscopic techniques. The fluorescence of the UCNPs (with main emission peaks at 548 and 660 nm under 980 nm excitation) is reduced in the presence of Cu(II) because of the formation of a blue oxidation product of 3,3′,5,5′-tetramethylbenzidine as a result of the peroxidase mimicking activity of Cu(II). In the presence of glyphosate, its strong affinity for Cu(II) leads to the formation of N-(phosphonomethyl)glycine copper(II) complexes. This inhibits the quenching ability and catalysis activity of Cu(II). Hence, fluorescence is increasingly less reduced. Fluorescence at 660 nm increases linearly in the 0.05 to 125 μg·mL−1 glyphosate concentration range and the detection limit is found 9.8 ng·mL−1. The colorimetric assay (performed at 652 nm) has a detection ranges from 5 to 125 μg·mL−1, and the limit of detection is 1 μg·mL−1.

Graphical abstract

Schematic representation of UCNP-H2O2-TMB-Cu(II) mixed system for optical determinations of glyphosate.


Fluorometric Upconversion nanoparticles Glyphosate Cu(II) Peroxidase mimicking activity 3,3′,5,5′-tetramethylbenzidine Colorimetric 



This work has been financially supported by the National Natural Science Foundation of China (31772063) and (31901772), Key Research and Development of Jiangsu Province (BE2017357), Anhui Provincial of Science and Technology (18030701141) and the China Postdoctoral Science Foundation (2019M651748).

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3936_MOESM1_ESM.doc (436 kb)
ESM 1 (DOC 436 kb)


  1. 1.
    Gui YX, Fan XN, Wang HM, Wang G, Chen SD (2012) Glyphosate induced cell death through apoptotic and autophagic mechanisms. Neurotoxicol Teratol 34(3):344–349. CrossRefPubMedGoogle Scholar
  2. 2.
    Marc J, Mulner-Lorillon O, Bellé R (2004) Glyphosate-based pesticides affect cell cycle regulation. Biol Cell 96(3):245–249. CrossRefPubMedGoogle Scholar
  3. 3.
    Gasnier C, Dumont C, Benachour N, Clair E, Chagnon MC, Séralini GE (2009) Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 262(3):184–191. CrossRefPubMedGoogle Scholar
  4. 4.
    Islas G, Rodriguez JA, Huizar LHM, Moreno FP, Carrillo EG (2014) Determination of glyphosate and aminomethylphosphnic acid in soils by HPLC with pre-column derivatization using 1,2-naphthoquinone-4-sulfonate. J Liq Chromatogr Relat Technol 37(9):1298–1309. CrossRefGoogle Scholar
  5. 5.
    Saito T, Aoki H, Namera A, Oikawa H, Miyazaki S, Nakamoto A, Inokuchi S (2011) Mix-mode TiO-C(18) monolith spin column extraction and GC-MS for the simultaneous assay of Organophosphorus compounds and Glufosinate, and glyphosate in human serum and urine. Anal Sci 27(10):999. CrossRefPubMedGoogle Scholar
  6. 6.
    Şenyuva HZ, Gilbert J (2010) Immunoaffinity column clean-up techniques in food analysis: a review. J Chromatogr B Anal Technol Biomed Life Sci 878(2):115–132. CrossRefGoogle Scholar
  7. 7.
    Mörtl M, Németh G, Juracsek J, Darvas B, Kamp L, Rubio F, Székács A (2013) Determination of glyphosate residues in Hungarian water samples by immunoassay. Microchem J 107:143–151. CrossRefGoogle Scholar
  8. 8.
    Sánchez-Bayo F, Hyne RV, Desseille KL (2010) An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers. Anal Chim Acta 675(2):125–131. CrossRefPubMedGoogle Scholar
  9. 9.
    Sok V, Fragoso A (2019) Amperometric biosensor for glyphosate based on the inhibition of tyrosinase conjugated to carbon nano-onions in a chitosan matrix on a screen-printed electrode. Microchim Acta 186(8).
  10. 10.
    Corbera M, Hidalgo M, Salvadó V, Wieczorek PP (2004) Determination of glyphosate and aminomethylphosphonic acid in natural water using the capillary electrophoresis combined with enrichment step. Anal Chim Acta 540(1):3–7. CrossRefGoogle Scholar
  11. 11.
    Chen Q, Chen H, Li Z, Pang J, Lin T, Guo L, Fu FF (2017) Colorimetric sensing of glyphosate in environmental water based on peroxidase mimetic activity of MoS2 nanosheets. J Nanosci Nanotechnol 17(8):5730–5734. CrossRefGoogle Scholar
  12. 12.
    Fang F, Wei RQ, Liu XN (2014) Novel pre-column derivatisation reagent for glyphosate by high-performance liquid chromatography and ultraviolet detection. Int J Environ An Ch 94(7):661–667. CrossRefGoogle Scholar
  13. 13.
    Aguirre MC, Urreta SE, Gomez CG (2019) A Cu2+-Cu/glassy carbon system for glyphosate determination. Sensors Actuators B Chem 284:675–683. CrossRefGoogle Scholar
  14. 14.
    Pérez AL, Tibaldo G, Sánchez GH, Siano GG, Marsili NR, Schenone AV (2019) A novel fluorimetric method for glyphosate and AMPA determination with NBD-Cl and MCR-ALS. Spectrochim Acta A Mol Biomol Spectrosc 214:119–128. CrossRefPubMedGoogle Scholar
  15. 15.
    Liu Y, Ouyang Q, Li HH, Zhang ZZ, Chen QS (2017) Development of an inner filter effects-based Upconversion nanoparticles–Curcumin Nanosystem for the sensitive sensing of fluoride ion. ACS Appl Mater Interfaces 9(21):18314–18321. CrossRefPubMedGoogle Scholar
  16. 16.
    Hu WW, Chen QS, Li HH, Ouyang Q, Zhao JW (2016) Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, Ho@SiO2 and Au nanoparticles. Biosens Bioelectron 80:398–404. CrossRefPubMedGoogle Scholar
  17. 17.
    Long Q, Li HT, Zhang YY, Yao SZ (2015) Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosens Bioelectron 68:168–174. CrossRefPubMedGoogle Scholar
  18. 18.
    Choi SY, Baek SH, Chang SJ, Song Y, Rafique R, Kang TL, Park TJ (2016) Synthesis of upconversion nanoparticles conjugated with graphene oxide quantum dots and their use against cancer cell imaging and photodynamic therapy. Biosens Bioelectron 93:267–273. CrossRefPubMedGoogle Scholar
  19. 19.
    Ma LN, Liu FY, Lei Z, Wang ZX (2017) A novel upconversion@polydopamine core@shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells. Biosens Bioelectron 87:638–645. CrossRefPubMedGoogle Scholar
  20. 20.
    Pan WX, Zhao JW, Chen QS (2015) Fabricating Upconversion fluorescent probes for rapidly sensing foodborne pathogens. J Agric Food Chem 63(36):8068–8074. CrossRefPubMedGoogle Scholar
  21. 21.
    Wu SJ, Duan N, Shi Z, Fang CC, Wang ZP (2014) Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+. Talanta 128:327–336. CrossRefPubMedGoogle Scholar
  22. 22.
    Chen HQ, Ren JC (2012) Sensitive determination of chromium (VI) based on the inner filter effect of upconversion luminescent nanoparticles (NaYF4:Yb3+,Er3+). Talanta 99:404–408. CrossRefPubMedGoogle Scholar
  23. 23.
    Songa EA, Arotiba OA, Owino JHO, Jahed N, Baker PGL, Iwuoha EI (2009) Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry 75(2):117–123. CrossRefPubMedGoogle Scholar
  24. 24.
    Stefano P, Paola V, Joong Hyun K, Pier Paolo P (2013) Colorimetric detection of human papilloma virus by double isothermal amplification. Chem Commun 49(90):10605–10607CrossRefGoogle Scholar
  25. 25.
    Lin TR, Zhong LS, Guo LQ, Fu FF, Chen GN (2014) Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 6(20):11856–11862. CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang L, Han L, Hu P, Wang L, Dong S (2013) TiO2 nanotube arrays: intrinsic peroxidase mimetics. Chem Commun 49(89):10480–10482. CrossRefGoogle Scholar
  27. 27.
    Guan JF, Peng J, Jin XY (2015) Synthesis of copper sulfide nanorods as peroxidase mimics for the colorimetric detection of hydrogen peroxide. Anal Methods 7(13):5454–5461. CrossRefGoogle Scholar
  28. 28.
    Dutta AK, Das S, Samanta S, Samanta PK, Adhikary B, Biswas P (2013) CuS nanoparticles as a mimic peroxidase for colorimetric estimation of human blood glucose level. Talanta 107:361–367. CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang LL, Li M, Qin YF, Chu ZD, Zhao SL (2014) A convenient label free colorimetric assay for pyrophosphatase activity based on a pyrophosphate-inhibited Cu2+-ABTS-H2O2 reaction. Analyst 139(23):6298–6303. CrossRefPubMedGoogle Scholar
  30. 30.
    Chang YQ, Zhe Z, Hao JH, Yang WS, Tang JL (2016) A simple label free colorimetric method for glyphosate detection based on the inhibition of peroxidase-like activity of Cu(II). Sensors Actuators B Chem 228:410–415. CrossRefGoogle Scholar
  31. 31.
    Sheals J, Persson P, Hedman B (2001) IR and EXAFS spectroscopic studies of glyphosate protonation and copper(II) complexes of glyphosate in aqueous solution. Inorg Chem 40(17):4302–4309. CrossRefPubMedGoogle Scholar
  32. 32.
    Shao H, Xu D, Ding Y, Hong X, Liu Y (2018) An "off-on" colorimetric and fluorometric assay for Cu(II) based on the use of NaYF4:Yb(III),Er(III) upconversion nanoparticles functionalized with branched polyethylenimine. Microchim Acta 185(4):211. CrossRefGoogle Scholar
  33. 33.
    Zhou JC, Yang ZL, Dong W, Tang RJ, Sun LD, Yan CH (2011) Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. Biomaterials 32(34):9059–9067. CrossRefPubMedGoogle Scholar
  34. 34.
    Wang FF, Zhang CL, Xue Q, Li HP, Xian YZ (2017) Label-free upconversion nanoparticles-based fluorescent probes for sequential sensing of Cu2+, pyrophosphate and alkaline phosphatase activity. Biosens Bioelectron 95:21–26. CrossRefPubMedGoogle Scholar
  35. 35.
    Kassab L, Bomfim F, Martinelli J, Wetter N, Neto J, de Araujo C (2009) Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbO-GeO2 glass containing silver nanoparticles. Appl Phys B Lasers Opt 94(2):239–242. CrossRefGoogle Scholar
  36. 36.
    Shyam S, Manjunath C, Venkataramanan M (2014) Highly luminescent colloidal Eu3+-doped KZnF3 nanoparticles for the selective and sensitive detection of Cu(II) ions. Chem Eur J 20(12):3311–3316. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiPeople’s Republic of China
  2. 2.School of Tea &Food Science and TechnologyAnhui Agricultural UniversityHefeiPeople’s Republic of China
  3. 3.School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations