Microchimica Acta

, 186:793 | Cite as

Differential pulse voltammetric determination of the carcinogenic diamine 4,4′-oxydianiline by electrochemical preconcentration on a MoS2 based sensor

  • María del Pozo
  • Carlos Sánchez-Sánchez
  • Luis Vázquez
  • Elías Blanco
  • María Dolores Petit-Domínguez
  • José Ángel Martín-Gago
  • Elena Casero
  • Carmen QuintanaEmail author
Original Paper


An electrochemical sensor for the carcinogen 4,4′-oxydianiline (Oxy) is described. The method is based on the ability of MoS2 nanosheets to preconcentrate Oxy. A glassy carbon electrode (GCE) was covered, by drop-casting, with MoS2 nanosheets that were obtained by exfoliation. X-Ray photoemission spectroscopy indicates that Oxy accumulates on the MoS2 nanosheets through an electropolymerization process similar to that reported for aniline. Both electrochemical impedance spectroscopy and atomic force microscopy were used to characterize the electrode surface at the different stages of device fabrication. Employing the current measured at +0.27 V vs. Ag/AgCl after Oxy adsorption, the modified GCE enables the voltammetric detection of Oxy at 80 nM levels with relative errors and relative standard deviations of <8.3 and <5.6%, respectively, at all the concentrations studied. The method was applied to the selective determination of Oxy in spiked river water samples. Very good selectivity and recoveries of around 95% in average are found.

Graphical abstract

Schematic representation of 4,4-oxydianiline electrochemical polymerization and preconcentration onto molybdenum disulfide nanosheets for the diamine determination in river waters.


Molybdenum disulfide Differential pulse voltammetry 4,4′-Oxydianiline X-ray photoemission spectroscopy Atomic force microscopy 



The authors acknowledge financial support from the Spanish MICINN (MAT2017-85089-C2-1-R, MAT2017-85089-C2-2-R) and the EU via the ERC-Synergy Program (grant ERC-2013-SYG-610256 NANOCOSMOS) and Horizon 2020 Research and Innovation Program (Graphene Flagship-core2 - 785219) and the Comunidad Autónoma de Madrid (P2018/NMT-4349, TRANSNANOAVANSENS-CM and P2018/NMT-4367 FOTOART).

Supplementary material

604_2019_3906_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1531 kb)


  1. 1.
    Vilian ATE, Dinesh B, Kang SM, Krishnan UM, Huh YS, Han YK (2019) Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications. Microchim Acta 186:203. CrossRefGoogle Scholar
  2. 2.
    Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F (2011) 2D materials: to graphene and beyond. Nanoscale 3:20–30. CrossRefPubMedGoogle Scholar
  3. 3.
    Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126. CrossRefGoogle Scholar
  4. 4.
    Sinha A, Dhanjai TB, Huang Y, Zhao H, Dang X, Chen J, Jain R (2018) MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review. TrAC Trends Anal Chem 102:75–90. CrossRefGoogle Scholar
  5. 5.
    Sun J, Li X, Guo W, Zhao M, Fan X, Dong Y, Xu C, Deng J, Fu Y (2017) Synthesis methods of two-dimensional MoS2: a brief review. Crystals 7:198. CrossRefGoogle Scholar
  6. 6.
    Kumar R, Kulriya PK, Mishra M, Singh F, Gupta G, Kumar M (2018) Highly selective and reversible NO2 gas sensor using vertically aligned MoS2 flake networks. Nanotechnology 29:464001. CrossRefPubMedGoogle Scholar
  7. 7.
    Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571. CrossRefPubMedGoogle Scholar
  8. 8.
    Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340:72–75. CrossRefGoogle Scholar
  9. 9.
    Fan X, Xu P, Zhou D, Sun Y, Li YC, Nguyen MAT, Terrones M, Mallouk TE (2015) Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett 15:5956–5960. CrossRefPubMedGoogle Scholar
  10. 10.
    Kirubasankar B, Palanisamy P, Arunachalam S, Murugadoss V, Angaiah S (2019) 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem Eng J 355:881–890. CrossRefGoogle Scholar
  11. 11.
    Seman RNAR, Azam MA, Ani MH (2018) Graphene/transition metal dichalcogenides hybrid supercapacitor electrode: status, challenges, and perspectives. Nanotechnology 29:502001CrossRefGoogle Scholar
  12. 12.
    Xu G, Yang L, Wei X, Ding J, Zhong J, Chu PK (2016) MoS2-quantum-dot-interspersed Li4Ti5O12 nanosheets with enhanced performance for Li- and Na-Ion batteries. Adv Funct Mater 26:3349–3358. CrossRefGoogle Scholar
  13. 13.
    Ma L, Zhou X, Xu L, Xu X, Zhang L, Chen W (2015) Chitosan-assisted fabrication of ultrathin MoS2/graphene heterostructures for Li-ion battery with excellent electrochemical performance. Electrochim Acta 167:39–47. CrossRefGoogle Scholar
  14. 14.
    Huang J, Dong Z, Li Y, Li J, Tang W, Yang H, Wang J, Bao Y, Jin J, Li R (2013) MoS2 nanosheet functionalized with Cu nanoparticles and its application for glucose detection. Mater Res Bull 48:4544–4547. CrossRefGoogle Scholar
  15. 15.
    Song D, Wang Y, Lu X, Gao Y, Li Y, Gao F (2018) Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2 nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides. Sensors Actuators B Chem 267:5–13. CrossRefGoogle Scholar
  16. 16.
    Su S, Sun H, Xu F, Yuwen L, Wang L (2013) Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode. Electroanalysis 25:2523–2529. CrossRefGoogle Scholar
  17. 17.
    Zhou J, Zhao Y, Bao J, Huo D, Fa H, Shen X, Hou C (2017) One-step electrodeposition of Au-Pt bimetallic nanoparticles on MoS2 nanoflowers for hydrogen peroxide enzyme-free electrochemical sensor. Electrochim Acta 250:152–158. CrossRefGoogle Scholar
  18. 18.
    Lin Y, Chen X, Lin Y, Zhou Q, Tang D (2015) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide. Microchim Acta 182:1803–1809. CrossRefGoogle Scholar
  19. 19.
    Saraf M, Natarajan K, Saini AK, Mobin SM (2017) Small biomolecule sensors based on an innovative MoS2–rGO heterostructure modified electrode platform: a binder-free approach. Dalton Trans 46:15848–15858. CrossRefPubMedGoogle Scholar
  20. 20.
    Aksimsek S, Jussila H, Sun Z (2018) Graphene–MoS2–metal hybrid structures for plasmonic biosensors. Opt Commun 428:233–239. CrossRefGoogle Scholar
  21. 21.
    Sajedi-Moghaddam A, Saievar-Iranizad E, Pumera M (2017) Two-dimensional transition metal dichalcogenide/conducting polymer composites: synthesis and applications. Nanoscale 9(24):8052–8065. CrossRefPubMedGoogle Scholar
  22. 22.
    Huang KJ, Liu YJ, Wang HB, Wang YY, Liu YM (2014) Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, au nanoparticle and enzyme multiple signal amplification. Biosens Bioelectron 55:195–202. CrossRefPubMedGoogle Scholar
  23. 23.
    Vijayaraj K, Dinakaran T, Lee Y, Kim S, Kim HS, Lee J, Chang SC (2017) One-step construction of a molybdenum disulfide/multi-walled carbon nanotubes/polypyrrole nanocomposite biosensor for the ex-vivo detection of dopamine in mouse brain tissue. Biochem Biophys Res Commun 494:181–187. CrossRefPubMedGoogle Scholar
  24. 24.
    Petit-Domínguez MD, Quintana C, Vázquez L, del Pozo M, Cuadrado I, Parra-Alfambra AM, Casero E (2018) Synergistic effect of MoS2 and diamond nanoparticles in electrochemical sensors: determination of the anticonvulsant drug valproic acid. Microchim Acta 185:334. CrossRefGoogle Scholar
  25. 25.
    Parra-Alfambra AM, Casero E, Vázquez L, Quintana C, del Pozo M, Petit-Domínguez MD (2018) MoS2 nanosheets for improving analytical performance of lactate biosensors. Sensors Actuators B Chem 274:310–317. CrossRefGoogle Scholar
  26. 26.
    Ma L, Wang G, Dai J (2017) Preparation of a functional reduced graphene oxide and carbon nanotube hybrid and its reinforcement effects on the properties of polyimide composites. J Appl Polym Sci 134:1–9. CrossRefGoogle Scholar
  27. 27.
    Khan F, Kausar A, Siddiq M (2016) Buckypapers of 4,4′-oxydianiline-modified polyvinylchloride and functional nano-filler obtained by resin infusion method. Iran Polym J 25:213–228. CrossRefGoogle Scholar
  28. 28.
    International Agency for Research on Cancer (1987) IARC monographs on the evaluation of the carcinogenic risks to humansGoogle Scholar
  29. 29.
    Andreescu D, Sadik OA (2005) Synthesis of polyoxydianiline membranes onto gold electrodes. J Electrochem Soc 152:E299–E307. CrossRefGoogle Scholar
  30. 30.
    Chang WY, Sung YH, Da Huang S (2003) Analysis of carcinogenic aromatic amines in water samples by solid-phase microextraction coupled with high-performance liquid chromatography. Anal Chim Acta 495:109–122. CrossRefGoogle Scholar
  31. 31.
    Lizier TM, Zanoni MVB (2012) Effect of ionic liquid on the determination of aromatic amines as contaminants in hair dyes by liquid chromatography coupled to electrochemical detection. Molecules 17:7961–7979. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mortensen SK, Trier XT, Foverskov A, Petersen JH (2005) Specific determination of 20 primary aromatic amines in aqueous food simulants by liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr A 1091:40–50. CrossRefPubMedGoogle Scholar
  33. 33.
    Garrigós MC, Reche F, Marín ML, Jiménez A (2002) Determination of aromatic amines formed from azo colorants in toy products. J Chromatogr A 976:309–317. CrossRefPubMedGoogle Scholar
  34. 34.
    Domínguez CSH, Quintana C, Vicente J, Hernández P, Hernández L (2008) Sub-monolayer assemblies of octanethiol and octadecylthiol at gold electrodes for the direct analysis of 4,4′-oxydianiline in wastewaters and shoe-dyeing samples. Talanta 74:1014–1019. CrossRefPubMedGoogle Scholar
  35. 35.
    Domínguez CSH, Quintana MC, Hernández P (2013) Self-assembled monolayers of cucurbit[6]uril on a gold electrode for 4,4’-Oxydianiline determination. Analytical application. Electroanalysis 25(5):1217–1222. CrossRefGoogle Scholar
  36. 36.
    Shim Y, Won M-S, Park S (1990) Electrochemistry of conductive polymers VIII. In situ spectroelectrochemical studies of polyoniline growth mechanisms. J Electrochem Soc 137:538–544CrossRefGoogle Scholar
  37. 37.
    Huang SX, Fischer DA, Gland JL (1996) Aniline adsorption, hydrogenation, and hydrogenolysis on the Ni(100) surface. J Phys Chem 3654:10223–10234. CrossRefGoogle Scholar
  38. 38.
    Olivares O, Likhanova NV, Gómez B, Navarrete J, Llanos-Serrano ME, Arce E, Hallen JM (2006) Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment. Appl Surf Sci 252:2894–2909. CrossRefGoogle Scholar
  39. 39.
    Jordan JL, Kovac CA, Morar JF, Pollak RA (1987) High-resolution photoemission study of the interfacial reaction of Cr with polyimide and model polymers. Phys Rev B 36:1369–1377CrossRefGoogle Scholar
  40. 40.
    Senanayake SD, Liu Z (2016) Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni–CeO2(111) catalysts: an in situ study of C–C and O–H bond scission. Phys Chem Chem Phys 18:16621–17118. CrossRefPubMedGoogle Scholar
  41. 41.
    Abel M, Rattana A, Watts JF (2000) Interaction of epoxy analogue molecules with organosilane-treated aluminum : a study by XPS and ToF – SIMS. Langmuir 16:6510–6518. CrossRefGoogle Scholar
  42. 42.
    Ruiz del Árbol N, Palacio I, Otero-irurueta G, Martínez JI, de Andrés PL, Stetsovych O, Moro-Lagares M, Mutombo P, Svec M, Jelínek P, Cossaro A, Floreano L, Ellis GJ, López MF, Martín-Gago JA (2018) On-surface bottom-up synthesis of azine derivatives displaying strong acceptor behavior. Angew Chem Int Ed 57:1–6. CrossRefGoogle Scholar
  43. 43.
    Chan HSO, Ng SC, Sim WS, Tan KL, Tan BTG (1992) Preparation and characterization of electrically conducting copolymers of aniline and anthranilic acid: evidence for self-doping by X-ray photoelectron spectroscopy. Macromolecules 25:6029–6034CrossRefGoogle Scholar
  44. 44.
    Chen Y, Kang ET, Neoh KG, Lim SL, Ma ZH, Tan KL (2001) Intrinsic redox states of polyaniline studied by high-resolution X-ray photoelectron spectroscopy. Colloid Polym Sci 76:73–76CrossRefGoogle Scholar
  45. 45.
    Schubert J, Kappenstein O, Luch A, Schulz TG (2011) Analysis of primary aromatic amines in the mainstream waterpipe smoke using liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 1218:5628–5637. CrossRefPubMedGoogle Scholar
  46. 46.
    Perez MÁF, Padula M, Moitinho D, Bottoli CBG (2019) Primary aromatic amines in kitchenware: determination by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1602:217–227. CrossRefPubMedGoogle Scholar
  47. 47.
    Jeyapragasam T, Meena Devi J, Ganesh V (2018) Molybdenum disulfide-based modifier for electrochemical detection of 4-nitrophenol. Ionics (Kiel) 24:4033–4041CrossRefGoogle Scholar
  48. 48.
    Gan X, Zhao H, Wong K, Yuan D, Zhang Y, Quan X (2018) Covalent functionalization of MoS2 nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for Cd (II) detection. Talanta 182:38–48. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • María del Pozo
    • 1
  • Carlos Sánchez-Sánchez
    • 2
  • Luis Vázquez
    • 2
  • Elías Blanco
    • 1
  • María Dolores Petit-Domínguez
    • 1
  • José Ángel Martín-Gago
    • 2
  • Elena Casero
    • 1
  • Carmen Quintana
    • 1
    Email author
  1. 1.Departamento de Química Analítica y Análisis InstrumentalFacultad de CienciasMadridSpain
  2. 2.ESISNA Group, Materials Science FactoryInstituto de Ciencia de Materiales de Madrid (CSIC)MadridSpain

Personalised recommendations