Advertisement

Microchimica Acta

, 187:131 | Cite as

A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles

  • I. S. Che Sulaiman
  • B. W. Chieng
  • M. J. Osman
  • K. K. OngEmail author
  • J. I. A. Rashid
  • W. M. Z. Wan Yunus
  • S. A. M. Noor
  • N. A. M. Kasim
  • N. A. Halim
  • A. Mohamad
Review Article
  • 63 Downloads

Abstract

This review (with 99 refs.) summarizes the progress that has been made in colorimetric (i.e. spectrophotometric) determination of organophosphate pesticides (OPPs) using gold and silver nanoparticles (NPs). Following an introduction into the field, a first large section covers the types and functions of organophosphate pesticides. Methods for colorimetric (spectrophotometric) measurements including RGB techniques are discussed next. A further section covers the characteristic features of gold and silver-based NPs. Syntheses and modifications of metal NPs are covered in section 5. This is followed by overviews on enzyme inhibition-based assays, aptamer-based assays and chemical (non-enzymatic) assays, and a discussion of specific features of colorimetric assays. Several Tables are presented that give an overview on the wealth of methods and materials. A concluding section addresses current challenges and discusses potential future trends and opportunities.

Graphical abstract

Schematic representation of organophosphate pesticide determinations based on aggregation of nanoparticles (particular silver or gold nanoparticles). This leads to a color change which can be determined visually and monitored by a red shift in the absorption spectrum.

Keywords

Aggregation Deaggregation Assay Silver nanoparticles Gold nanoparticles 

Notes

Acknowledgements

The authors would like to highly acknowledge financial support (UPNM/2018/CHEMDEF/ST/2) from Ministry of Education Malaysia. The authors also gratefully acknowledge Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia).

Compliance with ethical standards

Competing interests

The author(s) declare that they have no competing interests.

References

  1. 1.
    Bai W, Zhu C, Liu J, Yan M, Yang S, Chen A (2015) Gold nanoparticle–based colorimetric aptasensor for rapid detection of six organophosphorous pesticides. Environ Toxicol Chem 34(10):2244–2249.  https://doi.org/10.1002/etc.3088 CrossRefPubMedGoogle Scholar
  2. 2.
    Chiou J, Leung AHH, Lee HW, W-t W (2015) Rapid testing methods for food contaminants and toxicants. J Integr Agric 14(11):2243–2264.  https://doi.org/10.1016/S2095-3119(15)61119-4 CrossRefGoogle Scholar
  3. 3.
    Kim K, Tsay OG, Atwood DA, Churchill DG (2011) Destruction and detection of chemical warfare agents. Chem Rev 111(9):5345–5403.  https://doi.org/10.1021/cr100193y CrossRefPubMedGoogle Scholar
  4. 4.
    Saini RK, Bagri LP, Bajpai AK (2017) Smart nanosensors for pesticide detection. In: Grumezescu AM (ed) New pesticides and soil sensors. Academic Press, pp 519–559.  https://doi.org/10.1016/B978-0-12-804299-1.00015-1 CrossRefGoogle Scholar
  5. 5.
    Rawtani D, Khatri N, Tyagi S, Pandey G (2018) Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manag 206:749–762.  https://doi.org/10.1016/j.jenvman.2017.11.037 CrossRefGoogle Scholar
  6. 6.
    Khatri N, Tyagi S, Rawtani D (2016) Assessment of drinking water quality and its health effects in rural areas of Harij Taluka, Patan District of Northern Gujarat. Environ Claim J 28(3):223–246.  https://doi.org/10.1080/10406026.2016.1190249 CrossRefGoogle Scholar
  7. 7.
    Kodir A, Imawan C, Permana IS, Handayani W (2016) Pesticide colorimetric sensor based on silver nanoparticles modified by L-cysteine. In: 2016 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), pp 43–47.  https://doi.org/10.1109/issimm.2016.7803719
  8. 8.
    Iyer R, Iken B, Leon A (2015) Developments in alternative treatments for organophosphate poisoning. Toxicol Lett 233(2):200–206.  https://doi.org/10.1016/j.toxlet.2015.01.007 CrossRefPubMedGoogle Scholar
  9. 9.
    Lotti M (2010) Chapter 72 - clinical toxicology of anticholinesterase agents in humans. In: Krieger R (ed) Hayes' handbook of pesticide toxicology, 3rd edn. Academic Press, New York, pp 1543–1589.  https://doi.org/10.1016/B978-0-12-374367-1.00072-0 CrossRefGoogle Scholar
  10. 10.
    Bala R, Dhingra S, Kumar M, Bansal K, Mittal S, Sharma RK, Wangoo N (2017) Detection of organophosphorus pesticide – Malathion in environmental samples using peptide and aptamer based nanoprobes. Chem Eng J 311:111–116.  https://doi.org/10.1016/j.cej.2016.11.070 CrossRefGoogle Scholar
  11. 11.
    Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Management of acute organophosphorus pesticide poisoning. Lancet 371(9612):597–607.  https://doi.org/10.1016/S0140-6736(07)61202-1 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Verma N, Bhardwaj A (2015) Biosensor Technology for Pesticides—a review. Appl Biochem Biotechnol 175(6):3093–3119.  https://doi.org/10.1007/s12010-015-1489-2 CrossRefPubMedGoogle Scholar
  13. 13.
    Ben Oujji N, Bakas I, Istamboulié G, Ait-Ichou I, Ait-Addi E, Rouillon R, Noguer T (2014) A simple colorimetric enzymatic-assay, based on immobilization of acetylcholinesterase by adsorption, for sensitive detection of organophosphorus insecticides in olive oil. Food Control 46:75–80.  https://doi.org/10.1016/j.foodcont.2014.05.006 CrossRefGoogle Scholar
  14. 14.
    Stoytcheva M, Zlatev R (2011) Organophosphorus pesticides analysis. In: Pesticides in the modern world-trends in pesticides analysis. IntechOpen, pp 143–164.  https://doi.org/10.5772/20892 CrossRefGoogle Scholar
  15. 15.
    Kumar DN, Alex SA, Kumar RSS, Chandrasekaran N, Mukherjee A (2015) Acetylcholinesterase inhibition-based ultrasensitive fluorometric detection of malathion using unmodified silver nanoparticles. Colloids Surf A Physicochem Eng Asp 485:111–117.  https://doi.org/10.1016/j.colsurfa.2015.09.013 CrossRefGoogle Scholar
  16. 16.
    Simonian AL, Good TA, Wang SS, Wild JR (2005) Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Anal Chim Acta 534(1):69–77.  https://doi.org/10.1016/j.aca.2004.06.056 CrossRefGoogle Scholar
  17. 17.
    Dong L, Craig MM, Khang D, Chen C (2012) Applications of Nanomaterials in biology and medicine. J Nanotechnol 2012:2.  https://doi.org/10.1155/2012/816184 CrossRefGoogle Scholar
  18. 18.
    Khanna V (2008) Nanoparticle-based sensors. Def Sci J 58(5):608–616.  https://doi.org/10.14429/dsj.58.1683 CrossRefGoogle Scholar
  19. 19.
    Nanda Kumar D, Satija J, Chandrasekaran N, Mukherjee A (2018) Acetylcholinesterase-based inhibition screening through in situ synthesis of gold nanoparticles: application for detection of nerve agent simulant. J Mol Liq 249:623–628.  https://doi.org/10.1016/j.molliq.2017.11.094 CrossRefGoogle Scholar
  20. 20.
    Fu G, Chen W, Yue X, Jiang X (2013) Highly sensitive colorimetric detection of organophosphate pesticides using copper catalyzed click chemistry. Talanta 103:110–115.  https://doi.org/10.1016/j.talanta.2012.10.016 CrossRefPubMedGoogle Scholar
  21. 21.
    Rani M, Shanker U (2018) Degradation of traditional and new emerging pesticides in water by nanomaterials: recent trends and future recommendations. Int J Environ Sci Technol 15(6):1347–1380.  https://doi.org/10.1007/s13762-017-1512-y CrossRefGoogle Scholar
  22. 22.
    Rapini R, Marrazza G (2016) Biosensor Potential in Pesticide Monitoring. In: Scognamiglio V, Rea G, Arduini F, Palleschi G (eds) Comprehensive analytical chemistry, vol 74. Elsevier, pp 3–31.  https://doi.org/10.1016/bs.coac.2016.03.016 CrossRefGoogle Scholar
  23. 23.
    Ferri D, Gaviña P, Costero AM, Parra M, Vivancos J-L, Martínez-Máñez R (2014) Detection and discrimination of organophosphorus pesticides in water by using a colorimetric probe array. Sensors Actuators B Chem 202:727–731.  https://doi.org/10.1016/j.snb.2014.06.011 CrossRefGoogle Scholar
  24. 24.
    Carullo P, Cetrangolo GP, Mandrich L, Manco G, Febbraio F (2015) Fluorescence spectroscopy approaches for the development of a real-time organophosphate detection system using an enzymatic sensor. Sensors 15(2):3932.  https://doi.org/10.3390/s150203932 CrossRefPubMedGoogle Scholar
  25. 25.
    Yüzbaşıoğlu D, Çelik M, Yılmaz S, Ünal F, Aksoy H (2006) Clastogenicity of the fungicide afugan in cultured human lymphocytes. Mutat Res -Gen Tox En 604(1):53–59.  https://doi.org/10.1016/j.mrgentox.2006.01.001 CrossRefGoogle Scholar
  26. 26.
    Rathnayake LK, Northrup SH (2016) Structure and mode of action of organophosphate pesticides: a computational study. Comput Theor Chem 1088:9–23.  https://doi.org/10.1016/j.comptc.2016.04.024 CrossRefGoogle Scholar
  27. 27.
    Costero AM, Parra M, Gil S, Gotor R, Martínez-Mañez R, Sancenón F, Royo S (2012) Selective detection of nerve agent simulants by using triarylmethanol-based chromogenic chemodosimeters. Eur J Org Chem 2012(26):4937–4946.  https://doi.org/10.1002/ejoc.201200570 CrossRefGoogle Scholar
  28. 28.
    Calas A-G, Perche O, Richard O, Perche A, Pâris A, Lauga F, Herzine A, Palomo J, Ardourel M-Y, Menuet A (2016) Characterization of seizures induced by acute exposure to an organophosphate herbicide, glufosinate-ammonium. Neuroreport 27(7):532–541.  https://doi.org/10.1097/WNR.0000000000000578 CrossRefPubMedGoogle Scholar
  29. 29.
    Beuret CJ, Zirulnik F, Giménez MS (2005) Effect of the herbicide glyphosate on liver lipoperoxidation in pregnant rats and their fetuses. Reprod Toxicol 19(4):501–504.  https://doi.org/10.1016/j.reprotox.2004.09.009 CrossRefPubMedGoogle Scholar
  30. 30.
    Guilherme S, Gaivão I, Santos MA, Pacheco M (2012) DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide – elucidation of organ-specificity and the role of oxidative stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 743(1):1–9.  https://doi.org/10.1016/j.mrgentox.2011.10.017 CrossRefGoogle Scholar
  31. 31.
    Chaimanee V, Evans JD, Chen Y, Jackson C, Pettis JS (2016) Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. J Insect Physiol 89:1–8.  https://doi.org/10.1016/j.jinsphys.2016.03.004 CrossRefPubMedGoogle Scholar
  32. 32.
    Namba T, Nolte CT, Jackrel J, Grob D (1971) Poisoning due to organophosphate insecticides: acute and chronic manifestations. Am J Med 50(4):475–492.  https://doi.org/10.1016/0002-9343(71)90337-8 CrossRefPubMedGoogle Scholar
  33. 33.
    Murdock RC, Shen L, Griffin DK, Kelley-Loughnane N, Papautsky I, Hagen JA (2013) Optimization of a paper-based ELISA for a human performance biomarker. Anal Chem 85(23):11634–11642.  https://doi.org/10.1021/ac403040a CrossRefPubMedGoogle Scholar
  34. 34.
    Sabela M, Balme S, Bechelany M, Janot J-M, Bisetty K (2017) A review of gold and silver nanoparticle-based colorimetric sensing assays. Adv Eng Mater 19(12):1700270.  https://doi.org/10.1002/adem.201700270 CrossRefGoogle Scholar
  35. 35.
    Yan X, Li H, Su X (2018) Review of optical sensors for pesticides. TrAC Trends Anal Chem 103:1–20.  https://doi.org/10.1016/j.trac.2018.03.004 CrossRefGoogle Scholar
  36. 36.
    Shah P, Zhu X, C-z L (2013) Development of paper-based analytical kit for point-of-care testing. Expert Rev Mol Diagn 13(1):83–91.  https://doi.org/10.1586/erm.12.130 CrossRefPubMedGoogle Scholar
  37. 37.
    Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E (2017) Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - a review. Anal Chim Acta 970:1–22.  https://doi.org/10.1016/j.aca.2017.03.037 CrossRefPubMedGoogle Scholar
  38. 38.
    Kangas MJ, Burks RM, Atwater J, Lukowicz RM, Williams P, Holmes AE (2017) Colorimetric sensor arrays for the detection and identification of chemical weapons and explosives. Crit Rev Anal Chem 47(2):138–153.  https://doi.org/10.1080/10408347.2016.1233805 CrossRefPubMedGoogle Scholar
  39. 39.
    Eksperiandova LP, Khimchenko SV, Stepanenko NA, Shcherbakov IB (2016) Simple instrumental and visual tests for nonlaboratory environmental control. J Anal Methods 2016:9.  https://doi.org/10.1155/2016/1270629 CrossRefGoogle Scholar
  40. 40.
    Apilux A, Isarankura-Na-Ayudhya C, Tantimongcolwat T, Prachayasittikul V (2015) Paper based acetylcholinesterase inhibition assay combining a wet system for organophosphate and carbamate pesticides detection. EXCLI J 14:307.  https://doi.org/10.17179/excli2014-684 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhao X, Zhao H, Yan L, Li N, Shi J, Jiang C (2019) Recent developments in detection using noble metal nanoparticles. Crit Rev Anal Chem:1–14.  https://doi.org/10.1080/10408347.2019.1576496
  42. 42.
    Alex S, Tiwari A (2015) Functionalized gold nanoparticles: synthesis, properties and applications - a review. J Nanosci Nanotechnol 15(3):1869–1894.  https://doi.org/10.1166/jnn.2015.9718 CrossRefPubMedGoogle Scholar
  43. 43.
    Xiong S, Deng Y, Zhou Y, Gong D, Xu Y, Yang L, Chen H, Chen L, Song T, Luo A, Deng X, Zhang C, Jiang Z (2018) Current progress in biosensors for organophosphorus pesticides based on enzyme functionalized nanostructures: a review. Anal Methods 10(46):5468–5479.  https://doi.org/10.1039/c8ay01851k CrossRefGoogle Scholar
  44. 44.
    Jazayeri MH, Aghaie T, Avan A, Vatankhah A, Ghaffari MRS (2018) Colorimetric detection based on gold nano particles (GNPs): an easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). Sens Biosensing Res 20:1–8.  https://doi.org/10.1016/j.sbsr.2018.05.002 CrossRefGoogle Scholar
  45. 45.
    Mancuso M, Jiang L, Cesarman E, Erickson D (2013) Multiplexed colorimetric detection of Kaposi's sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale 5(4):1678–1686.  https://doi.org/10.1039/c3nr33492a CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.05.011 CrossRefGoogle Scholar
  47. 47.
    Njoki PN, Lim I-IS, Mott D, Park H-Y, Khan B, Mishra S, Sujakumar R, Luo J, Zhong C-J (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111(40):14664–14669.  https://doi.org/10.1021/jp074902z CrossRefGoogle Scholar
  48. 48.
    Barman G, Maiti S, Konar Laha J (2013) Trichloroacetic acid assisted synthesis of gold nanoparticles and its application in detection and estimation of pesticide. J Anal Sci Technol 4(1):3.  https://doi.org/10.1186/2093-3371-4-3 CrossRefGoogle Scholar
  49. 49.
    Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961.  https://doi.org/10.1021/cr200061k CrossRefPubMedGoogle Scholar
  50. 50.
    Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4(3):244–251.  https://doi.org/10.1016/j.nantod.2009.04.001 CrossRefGoogle Scholar
  51. 51.
    Nath S, Jana S, Pradhan M, Pal T (2010) Ligand-stabilized metal nanoparticles in organic solvent. J Colloid Interface Sci 341(2):333–352.  https://doi.org/10.1016/j.jcis.2009.09.049 CrossRefPubMedGoogle Scholar
  52. 52.
    Zewde B, Ambaye A, Stubbs J III, Raghavan D (2016) A review of stabilized silver nanoparticles—synthesis, biological properties, characterization, and potential areas of applications. Nanotechnol Nanomed 4(1043):1–14Google Scholar
  53. 53.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609.  https://doi.org/10.1038/382607a0 CrossRefPubMedGoogle Scholar
  54. 54.
    Chang D, Zakaria S, Deng M, Allen N, Tram K, Li Y (2016) Integrating Deoxyribozymes into colorimetric sensing platforms. Sensors 16(12):2061.  https://doi.org/10.3390/s16122061 CrossRefGoogle Scholar
  55. 55.
    Piriya VSA, Joseph P, Daniel SCGK, Lakshmanan S, Kinoshita T, Muthusamy S (2017) Colorimetric sensors for rapid detection of various analytes. Mater Sci Eng C 78:1231–1245.  https://doi.org/10.1016/j.msec.2017.05.018 CrossRefGoogle Scholar
  56. 56.
    Kumar P, Kim K-H, Deep A (2015) Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosens Bioelectron 70:469–481.  https://doi.org/10.1016/j.bios.2015.03.066 CrossRefPubMedGoogle Scholar
  57. 57.
    Li H, Guo J, Ping H, Liu L, Zhang M, Guan F, Sun C, Zhang Q (2011) Visual detection of organophosphorus pesticides represented by mathamidophos using au nanoparticles as colorimetric probe. Talanta 87:93–99.  https://doi.org/10.1016/j.talanta.2011.09.046 CrossRefPubMedGoogle Scholar
  58. 58.
    Štěpánková Š, Vorčáková K (2016) Cholinesterase-based biosensors. J Enzym Inhib Med Ch 31(sup3):180–193.  https://doi.org/10.1080/14756366.2016.1204609 CrossRefGoogle Scholar
  59. 59.
    Satnami ML, Korram J, Nagwanshi R, Vaishanav SK, Karbhal I, Dewangan HK, Ghosh KK (2018) Gold nanoprobe for inhibition and reactivation of acetylcholinesterase: an application to detection of organophosphorus pesticides. Sensors Actuators B Chem 267:155–164.  https://doi.org/10.1016/j.snb.2018.03.181 CrossRefGoogle Scholar
  60. 60.
    Bala R, Sharma RK, Wangoo N (2015) Highly sensitive colorimetric detection of ethyl parathion using gold nanoprobes. Sensors Actuators B Chem 210:425–430.  https://doi.org/10.1016/j.snb.2014.12.123 CrossRefGoogle Scholar
  61. 61.
    Pavlov V, Xiao Y, Willner I (2005) Inhibition of the acetycholine esterase-stimulated growth of au nanoparticles: nanotechnology-based sensing of nerve gases. Nano Lett 5(4):649–653.  https://doi.org/10.1021/nl050054c CrossRefPubMedGoogle Scholar
  62. 62.
    Sun J, Guo L, Bao Y, Xie J (2011) A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide. Biosens Bioelectron 28(1):152–157.  https://doi.org/10.1016/j.bios.2011.07.012 CrossRefPubMedGoogle Scholar
  63. 63.
    Liu D, Chen W, Wei J, Li X, Wang Z, Jiang X (2012) A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal Chem 84(9):4185–4191.  https://doi.org/10.1021/ac300545p CrossRefPubMedGoogle Scholar
  64. 64.
    Wu S, Li D, Wang J, Zhao Y, Dong S, Wang X (2017) Gold nanoparticles dissolution based colorimetric method for highly sensitive detection of organophosphate pesticides. Sensors Actuators B Chem 238:427–433.  https://doi.org/10.1016/j.snb.2016.07.067 CrossRefGoogle Scholar
  65. 65.
    Lu L, Xia Y (2015) Enzymatic reaction modulated gold nanorod end-to-end self-assembly for ultrahigh sensitively colorimetric sensing of cholinesterase and organophosphate pesticides in human blood. Anal Chem 87(16):8584–8591.  https://doi.org/10.1021/acs.analchem.5b02516 CrossRefPubMedGoogle Scholar
  66. 66.
    Virel A, Saa L, Pavlov V (2009) Modulated growth of nanoparticles. Application for sensing nerve gases. Anal Chem 81(1):268–272.  https://doi.org/10.1021/ac801949x CrossRefPubMedGoogle Scholar
  67. 67.
    Tan MJ, Hong Z-Y, Chang M-H, Liu C-C, Cheng H-F, Loh XJ, Chen C-H, Liao C-D, Kong KV (2017) Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides. Biosens Bioelectron 96:167–172.  https://doi.org/10.1016/j.bios.2017.05.005 CrossRefPubMedGoogle Scholar
  68. 68.
    Li Z, Wang Y, Ni Y, Kokot S (2014) Unmodified silver nanoparticles for rapid analysis of the organophosphorus pesticide, dipterex, often found in different waters. Sensors Actuators B Chem 193:205–211.  https://doi.org/10.1016/j.snb.2013.11.096 CrossRefGoogle Scholar
  69. 69.
    Lv B, Wei M, Liu Y, Liu X, Wei W, Liu S (2016) Ultrasensitive photometric and visual determination of organophosphorus pesticides based on the inhibition of enzyme-triggered formation of core-shell gold-silver nanoparticles. Microchim Acta 183(11):2941–2948.  https://doi.org/10.1007/s00604-016-1939-8 CrossRefGoogle Scholar
  70. 70.
    Kim YS, Kim JH, Kim IA, Lee SJ, Jurng J, Gu MB (2010) A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Biosens Bioelectron 26(4):1644–1649.  https://doi.org/10.1016/j.bios.2010.08.046 CrossRefPubMedGoogle Scholar
  71. 71.
    Bala R, Kumar M, Bansal K, Sharma RK, Wangoo N (2016) Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosens Bioelectron 85:445–449.  https://doi.org/10.1016/j.bios.2016.05.042 CrossRefPubMedGoogle Scholar
  72. 72.
    Wang P, Wan Y, Ali A, Deng S, Su Y, Fan C, Yang S (2016) Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. SCIENCE CHINA Chem 59(2):237–242.  https://doi.org/10.1007/s11426-015-5488-5 CrossRefGoogle Scholar
  73. 73.
    Abnous K, Danesh NM, Ramezani M, Alibolandi M, Emrani AS, Lavaee P, Taghdisi SM (2018) A colorimetric gold nanoparticle aggregation assay for malathion based on target-induced hairpin structure assembly of complementary strands of aptamer. Microchim Acta 185(4):216.  https://doi.org/10.1007/s00604-018-2752-3 CrossRefGoogle Scholar
  74. 74.
    Lisha KP, Anshup PT (2009) Enhanced visual detection of pesticides using gold nanoparticles. J Environ Sci Health B 44(7):697–705.  https://doi.org/10.1080/03601230903163814 CrossRefPubMedGoogle Scholar
  75. 75.
    Kiran K (2013) Detection of chlorpyrifos pesticide in various water samples using gold nanoparticles. J Res Eng Technol 2(11):2319–2322Google Scholar
  76. 76.
    Newman JDS, Roberts JM, Blanchard GJ (2007) Optical organophosphate/phosphonate sensor based upon gold nanoparticle functionalized quartz. Anal Chim Acta 602(1):101–107.  https://doi.org/10.1016/j.aca.2007.08.051 CrossRefPubMedGoogle Scholar
  77. 77.
    Fahimi-Kashani N, Hormozi-Nezhad MR (2016) Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides. Anal Chem 88(16):8099–8106.  https://doi.org/10.1021/acs.analchem.6b01616 CrossRefPubMedGoogle Scholar
  78. 78.
    D'Souza SL, Pati RK, Kailasa SK (2014) Ascorbic acid functionalized gold nanoparticles as a probe for colorimetric and visual read-out determination of dichlorvos in environmental samples. Anal Methods 6(22):9007–9014.  https://doi.org/10.1039/c4ay01004c CrossRefGoogle Scholar
  79. 79.
    Park Y, Im AR, Hong YN, Kim C-K, Kim YS (2011) Detection of malathion, fenthion and methidathion by using heparin-reduced gold nanoparticles. J Nanosci Nanotechnol 11(9):7570–7578.  https://doi.org/10.1166/jnn.2011.5123 CrossRefPubMedGoogle Scholar
  80. 80.
    Rohit JV, Basu H, Singhal RK, Kailasa SK (2016) Development of p-nitroaniline dithiocarbamate capped gold nanoparticles-based microvolume UV–vis spectrometric method for facile and selective detection of quinalphos insecticide in environmental samples. Sensors Actuators B Chem 237:826–835.  https://doi.org/10.1016/j.snb.2016.07.019 CrossRefGoogle Scholar
  81. 81.
    Ma S, He J, Guo M, Sun X, Zheng M, Wang Y (2018) Ultrasensitive colorimetric detection of triazophos based on the aggregation of silver nanoparticles. Colloids Surf A Physicochem Eng Asp 538:343–349.  https://doi.org/10.1016/j.colsurfa.2017.11.030 CrossRefGoogle Scholar
  82. 82.
    Wang X, Yang Y, Dong J, Bei F, Ai S (2014) Lanthanum-functionalized gold nanoparticles for coordination–bonding recognition and colorimetric detection of methyl parathion with high sensitivity. Sensors Actuators B Chem 204:119–124.  https://doi.org/10.1016/j.snb.2014.07.093 CrossRefGoogle Scholar
  83. 83.
    Li X, Cui H, Zeng Z (2018) A simple colorimetric and fluorescent sensor to detect organophosphate pesticides based on adenosine triphosphate-modified gold nanoparticles. Sensors 18(12):4302.  https://doi.org/10.3390/s18124302 CrossRefGoogle Scholar
  84. 84.
    Kim MS, Kim GW, Park TJ (2015) A facile and sensitive detection of organophosphorus chemicals by rapid aggregation of gold nanoparticles using organic compounds. Biosens Bioelectron 67:408–412.  https://doi.org/10.1016/j.bios.2014.08.073 CrossRefPubMedGoogle Scholar
  85. 85.
    Bhamore JR, Ganguly P, Kailasa SK (2016) Molecular assembly of 3-mercaptopropinonic acid and guanidine acetic acid on silver nanoparticles for selective colorimetric detection of triazophos in water and food samples. Sensors Actuators B Chem 233:486–495.  https://doi.org/10.1016/j.snb.2016.04.111 CrossRefGoogle Scholar
  86. 86.
    Xiong D, Li H (2008) Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology 19(46):465502.  https://doi.org/10.1088/0957-4484/19/46/465502 CrossRefPubMedGoogle Scholar
  87. 87.
    McMahon G, O’Malley S, Nolan K, Diamond D (2003) Important calixarene derivatives - their synthesis and applications. Arkivoc 7:23–31.  https://doi.org/10.3998/ark.5550190.0004.704 CrossRefGoogle Scholar
  88. 88.
    Acharya A, Samanta K, Rao CP (2012) Conjugates of calixarenes emerging as molecular entities of nanoscience. Coord Chem Rev 256(17):2096–2125.  https://doi.org/10.1016/j.ccr.2012.05.018 CrossRefGoogle Scholar
  89. 89.
    Kongor AR, Mehta VA, Modi KM, Panchal MK, Dey SA, Panchal US, Jain VK (2016) Calix-based nanoparticles: a review. Top Curr Chem 374(3):28.  https://doi.org/10.1007/s41061-016-0029-z CrossRefGoogle Scholar
  90. 90.
    Liu G, Yang X, Li T, Yu H, Du X, She Y, Wang J, Wang S, Jin F, Jin M, Shao H, Zheng L, Zhang Y, Zhou P (2015) Spectrophotometric and visual detection of the herbicide atrazine by exploiting hydrogen bond-induced aggregation of melamine-modified gold nanoparticles. Microchim Acta 182(11–12):1983–1989.  https://doi.org/10.1007/s00604-015-1531-7 CrossRefGoogle Scholar
  91. 91.
    Guo L, Xu Y, Ferhan AR, Chen G, Kim D-H (2013) Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. J Am Chem Soc 135(33):12338–12345.  https://doi.org/10.1021/ja405371g CrossRefPubMedGoogle Scholar
  92. 92.
    Lin C-Y, Yu C-J, Lin Y-H, Tseng W-L (2010) Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of tween 20-stabilized gold nanoparticles. Anal Chem 82(16):6830–6837.  https://doi.org/10.1021/ac1007909 CrossRefPubMedGoogle Scholar
  93. 93.
    Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95.  https://doi.org/10.1016/0006-2952(61)90145-9 CrossRefPubMedGoogle Scholar
  94. 94.
    Martinez AW, Phillips ST, Carrilho E, Thomas SW III, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80(10):3699–3707.  https://doi.org/10.1021/ac800112r CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Thanh NTK, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles. Anal Chem 74(7):1624–1628.  https://doi.org/10.1021/ac011127p CrossRefPubMedGoogle Scholar
  96. 96.
    Jornet-Martínez N, Gómez-Ojea R, Tomás-Huercio O, Herráez-Hernández R, Campíns-Falcó P (2018) Colorimetric determination of alcohols in spirit drinks using a reversible solid sensor. Food Control 94:7–16.  https://doi.org/10.1016/j.foodcont.2018.06.020 CrossRefGoogle Scholar
  97. 97.
    Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with Single Base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964.  https://doi.org/10.1021/ja972332i CrossRefGoogle Scholar
  98. 98.
    Hutter E, Maysinger D (2013) Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol Sci 34(9):497–507.  https://doi.org/10.1016/j.tips.2013.07.002 CrossRefPubMedGoogle Scholar
  99. 99.
    Free P, Shaw CP, Lévy R (2009) PEGylation modulates the interfacial kinetics of proteases on peptide-capped gold nanoparticles. Chem Commun 33:5009–5011.  https://doi.org/10.1039/b910657j CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  • I. S. Che Sulaiman
    • 1
  • B. W. Chieng
    • 1
  • M. J. Osman
    • 2
  • K. K. Ong
    • 1
    • 2
    Email author
  • J. I. A. Rashid
    • 2
  • W. M. Z. Wan Yunus
    • 3
  • S. A. M. Noor
    • 2
  • N. A. M. Kasim
    • 1
    • 2
  • N. A. Halim
    • 2
  • A. Mohamad
    • 4
  1. 1.Research Centre for Chemical DefenceUniversiti Pertahanan Nasional Malaysia (National Defence University of Malaysia)Kuala LumpurMalaysia
  2. 2.Department of Chemistry and Biology, Centre for Defence Foundation StudiesNational Defence University of MalaysiaKuala LumpurMalaysia
  3. 3.Centre for TropicalisationNational Defence University of MalaysiaKuala LumpurMalaysia
  4. 4.Centre of Foundation Studies for Agricultural ScienceUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations