Advertisement

Microchimica Acta

, 186:751 | Cite as

Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-β-cyclodextrin

  • Wenting LiangEmail author
  • Yanqin Rong
  • Lifang Fan
  • Caihong Zhang
  • Wenjuan Dong
  • Jing Li
  • Jianping NiuEmail author
  • Cheng YangEmail author
  • Shaomin Shuang
  • Chuan Dong
  • Wai-Yeung WongEmail author
Original Paper
  • 93 Downloads

Abstract

Reduced graphene oxide containing Fe3O4 nanoparticles was decorated with hydroxypropyl-β-cyclodextrin (HP-β-CD) to construct a novel nanocomposite (3D-rGO/Fe3O4/HP-β-CD). The composite was placed on a glassy carbon electrode (GCE) to design an electrochemical sensor for detecting simultaneously serotonin (5-HT), dopamine (DA), and ascorbic acid (AA). The interconnected porous reduced graphene oxide framework tightly anchored to the Fe3O4 magnetic nanoparticles warrants good electrical conductivity and efficient catalytic activity. The HP-β-CD acts as a supramolecular host with high recognition ability for 5-HT, DA and AA. Well-separated oxidation peaks and increased peak currents were observed for 5-HT, DA, and AA individually and in mixtures by differential pulse voltammetry (DPV). The following figures of merit were found for simultaneous electrochemical determination of 5-HT, DA, and AA: (a) Well separated peaks at around 0.316, 0.16 and − 0.044 V; (b) linear responses in the 0.01 – 25 μM, 0.02 – 25 μM and 10 – 350 μM; (c) detection limits of 3.3 nM, 6.7 nM and 3.3 μM (S/N = 3), and (d) recoveries of 96.9-103%, 97.3%-102% and 96.3-105% from spiked serum samples, respectively. All relative standard deviation (RSD) are less than 4%.

Graphical abstract

Schematic representation of simultaneous detecting serotonin (5-HT), dopamine (DA) and ascorbic acid (AA) for three-dimensional reduced-graphene oxide/Fe3O4/hydroxypropyl-β-cyclodextrin (3D-rGO/Fe3O4/HP-β-CD) by differential pulse voltammetry (DPV) approach.

Keywords

Three-dimensional reduced-graphene oxide Magnetic nanoparticles Hydroxypropyl-β-cyclodextrin Electrochemical sensing platform Simultaneous determination 

Notes

Acknowledgements

This work was conducted with the support of the National Natural Science Foundation of China (No. 21976113, 21871194, 21707082, 21874087, and 21575084), the Natural Science Foundation of Shanxi Province (No. 201801D221059, 201801D121040), the Hundred Talent Program of Shanxi Province, the Hong Kong Research Grants Council (PolyU 153051/17P) and the Hong Kong Polytechnic University (1-ZE1C and 847S). We are especially grateful for Scientific Instrument Center of Shanxi University providing XRD analysis.

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3861_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1.38 mb)

References

  1. 1.
    Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev 108:1614–1641CrossRefGoogle Scholar
  2. 2.
    Arrigoni O, Tullio CD (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9CrossRefGoogle Scholar
  3. 3.
    Nieoullon A, Coquerel A (2003) Dopamine: a key regulator to adapt action, emotion, motivation and cognition. Curr Opin Neurol 16:S3–S9CrossRefGoogle Scholar
  4. 4.
    Wightman RM, May LJ, Michae AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60:769A–779ACrossRefGoogle Scholar
  5. 5.
    Mo JW, Ogorevc B (2001) Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber. Anal Chem 73:1196–1202CrossRefGoogle Scholar
  6. 6.
    Wang Y, Xia YS (2019) Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review. Microchim Acta 186:50CrossRefGoogle Scholar
  7. 7.
    Batool R, Akhtar MA, Hayat A, Han DX, Niu L, Ahmad MA, Nawaz MH (2019) A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose. Microchim Acta 186:267CrossRefGoogle Scholar
  8. 8.
    Li SM, Wang YS, Hsiao ST, Liao WH, Lin CW, Yang SY, Tien HW, Ma CCM, Hu CC (2015) Fabrication of a silver nanowire-reduced graphene oxide-based electrochemical biosensor and its enhanced sensitivity in the simultaneous determination of ascorbic acid, dopamine, and uric acid. J Mater Chem C 3:9444–9453CrossRefGoogle Scholar
  9. 9.
    Khohnevisan K, Maleki H, Honarvarfard E, Baharifar H, Gholami M, Faridbod F, Larijani B, Majidi RF, Khorramizadeh MR (2019) Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review. Microchim Acta 186:49CrossRefGoogle Scholar
  10. 10.
    Wei J, He JB, Cao SQ, Zhu YW, Wang Y, Hang GP (2010) Enhanced sensing of ascorbic acid, dopamine and serotonin at solid carbon paste electrode with a nonionic polymer film. Talanta 83:190–196CrossRefGoogle Scholar
  11. 11.
    Jin GP, Lin XQ, Gong JM (2004) Novel choline and acetylcholine modified glassy carbon electrodes for simultaneous determination of dopamine, serotonin and ascorbic acid. J Electroanal Chem 569:135–142CrossRefGoogle Scholar
  12. 12.
    Zhou JQ, Sheng ML, Jiang XY, Wu GZ, Gao F (2013) Simultaneous determination of dopamine, serotonin and ascorbic acid at a glassy carbon electrode modified with carbon-spheres. Sensors 13:14029–14040CrossRefGoogle Scholar
  13. 13.
    Li C, Shi G (2012) Three-dimensional graphene architectures. Nanoscale 4:5549–5563CrossRefGoogle Scholar
  14. 14.
    Lu LP, Guo LQ, Kang TF, Cheng SY (2017) A gold electrode modified with a three-dimensional graphene-DNA composite for sensitive voltammetric determination of dopamine. Microchim Acta 184:2949–2957CrossRefGoogle Scholar
  15. 15.
    Liang WT, Rong YQ, Fan LF, Dong WJ, Dong QC, Yang C, Zhong ZH, Dong C, Shuang SM, Wong WY (2018) 3D graphene/hydroxypropyl-β-cyclodextrin nanocomposite as an electrochemical chiral sensor for the recognition of tryptophan enantiomers. J Mater Chem C 6:12822–12829CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Huang BT, Yu F, Yuan QH, Gu M, Ji JY, Zhang Y, Li YC (2018) 3D nitrogen-doped graphite foam@Prussian blue: an electrochemical sensing platform for highly sensitive determination of H2O2 and glucose. Microchim Acta 185:86CrossRefGoogle Scholar
  17. 17.
    Zhao YN, Zhou J, Jia ZM, Huo DQ, Liu QY, Zhong DQ, Hu Y, Yang M, Bian MH, Hou CJ (2019) In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 186:92CrossRefGoogle Scholar
  18. 18.
    Esmaeilpour M, Sardarian AR, Javidi J (2012) Schiff base complex of metal ions supported on superparamagnetic Fe3O4@SiO2 nanoparticles: an efficient, selective and recyclable catalyst for synthesis of 1,1-diacetates from aldehydes under solvent-free conditions. Appl Catal A: General 445:359–367CrossRefGoogle Scholar
  19. 19.
    Kumar R, Singh RK, Vaz AR, Savu RSA, Moshkalev SA (2017) Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl Mater Interfaces 9:8880–8890CrossRefGoogle Scholar
  20. 20.
    Wang QQ, Zhang XP, Huang L, Zhang ZQ, Dong SJ (2017) One-pot synthesis of Fe3O4 nanoparticle loaded 3D porous graphene nanocomposites with enhanced nanozyme activity for glucose detection. ACS Appl Mater Interfaces 9:7465–7471CrossRefGoogle Scholar
  21. 21.
    Qiu N, Liu Y, Xiang M, Lu XM, Yang Q, Guo R (2018) A facile and stable colorimetric sensor based on three-dimensional graphene/mesoporous Fe3O4 nanohybrid for highly sensitive and selective detection of p-nitrophenol. Sensors Actuators B Chem 266:86–94CrossRefGoogle Scholar
  22. 22.
    Chang Z, Zhou YL, Hao LJ, Hao YQ, Zhu X, Xu MT (2017) Simultaneous determination of dopamine and ascorbic acid using β-cyclodextrin/Au nanoparticles/graphene-modified electrodes. Anal Methods 9:664–671CrossRefGoogle Scholar
  23. 23.
    Abbaspour A, Noori A (2011) A cyclodextrin host–guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens Bioelectron 26:4674–4680CrossRefGoogle Scholar
  24. 24.
    Niu XH, Mo ZL, Yang X, Sun MY, Zhao P, Li ZL, Ouyang MX, Liu ZY, Gao HH, Guo RB, Liu NJ (2018) Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Microchim Acta 185:328CrossRefGoogle Scholar
  25. 25.
    Feng WL, Liu C, Lu SY, Zhang CY, Zhu XH, Liang Y, Nan JM (2014) Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene. Microchim Acta 181:501–509CrossRefGoogle Scholar
  26. 26.
    Upadhyay SS, Kalambate PK, Srivastava AK (2017) Enantioselective analysis of moxifloxacin hydrochloride enantiomers with graphene-β-cyclodextrin-nanocomposite modified carbon paste electrode using adsorptive stripping differential pulse voltammetry. Electrochim Acta 248:258–269CrossRefGoogle Scholar
  27. 27.
    Liang WT, Yang C, Zhou DY, Haneoka H, Nishijima M, Fukuhara G, Mori T, Castiglione F, Mele A, Caldera F, Trotta F, Inoue Y (2013) Phase-controlled supramolecular photochirogenesis in cyclodextrin nanosponges. Chem Commun 49:3510–3512CrossRefGoogle Scholar
  28. 28.
    Liang WT, Huang Y, Lu DT, Ma XW, Gong T, Cui XD, Yu BF, Yang C, Dong C, Shuang SM (2019) β-Cyclodextrin-hyaluronic acid polymer functionalized magnetic graphene oxide nanocomposites for targeted photo-chemotherapy of tumor cells. Polymers 11:133CrossRefGoogle Scholar
  29. 29.
    Chaudhuri S, Chakraborty S, Sengupta PK (2010) Encapsulation of serotonin in β-cyclodextrin nano-cavities: fluorescence spectroscopic and molecular modeling studies. J Mol Struct 975:160–165CrossRefGoogle Scholar
  30. 30.
    Palomar-Pardavé M, Alarcón-ángeles G, Ramírez-Silva MT, Romero-Romo M, Rojas-Hernández A, Corona-Avendano S (2011) Electrochemical and spectrophotometric determination of the formation constants of the ascorbic acid-β-cyclodextrin and dopamine-β-cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 69:91–99CrossRefGoogle Scholar
  31. 31.
    Dresselhaus MS, Jorio A, Souza Filho AG, Saito R (2010) Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Phil Trans R Soc A 368:5355–5377CrossRefGoogle Scholar
  32. 32.
    Adams RN (1969) Electrochemistry at solid electrodes. Marcel Dekker, New YorkGoogle Scholar
  33. 33.
    Torabi R, Compton RG (2007) A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode. Anal Bioanal Chem 387:2793–2800CrossRefGoogle Scholar
  34. 34.
    Khan Md ZH, Liu XQ, Tang YF, Zhu JH, Hu WP, Liu XH (2018) A glassy carbon electrode modified with a composite consisting of gold nanoparticle, reduced graphene oxide and poly(L-arginine) for simultaneous voltammetric determination of dopamine, serotonin and L-tryptophan. Microchim Acta 185:439CrossRefGoogle Scholar
  35. 35.
    Jiang XH, Lin XQ (2005) Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Anal Chim Acta 537:145–151CrossRefGoogle Scholar
  36. 36.
    Han HS, Lee HK, You JM, Jeong H, Jeon S (2014) Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced-GO-porphyrin. Sensors Actuators B Chem 190:886–895CrossRefGoogle Scholar
  37. 37.
    Sun DF, Li HJ, Li MJ, Li CP, Dai HL, Sun DZ, Yang BH (2018) Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sensors Actuators B Chem 259:433–442CrossRefGoogle Scholar
  38. 38.
    Wang ZH, Liang QL, Wang YM, Luo GA (2003) Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J Electroanal Chem 540:129–134CrossRefGoogle Scholar
  39. 39.
    Deng WF, Yuan XY, Tan YM, Ma M, Xie QJ (2016) Three-dimensional graphene-like carbon frameworks as a new electrode material for electrochemical determination of small biomolecules. Biosens Bioelectron 85:618–624CrossRefGoogle Scholar
  40. 40.
    Huang HP, Yue YF, Chen ZZ, Chen YN, Wu SZ, Liao JS, Liu SJ, Wen HR (2019) Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Microchim Acta 186:189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Environmental Science, Department of ChemistryShanxi UniversityTaiyuanChina
  2. 2.Department of NeurosurgeryShanxi academy of Medical Sciences Shanxi Dayi HospitalTaiyuanChina
  3. 3.College of Chemistry and Healthy Food, Evaluation Research Center, West China Medical SchoolSichuan UniversityChengduChina
  4. 4.Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations