Microchimica Acta

, 186:691 | Cite as

Cobalt-doped nanoporous carbon as SALDI-TOF-MS adsorbent and matrix for quantification of cetyltrimethylammonium bromide, Rhodamine B and Malachite Green at sub-ppt levels

  • Deshuai Zhen
  • Ning Jiang
  • Hongchao Geng
  • Yan Qiao
  • Yu Liu
  • Xingqi Zhu
  • Chan Gao
  • Craig A. Grimes
  • Qingyun CaiEmail author
Original Paper


Cobalt-doped nanoporous carbon (Co-NPC) with dodecahedral shape was pyrolytically synthesized and applied as a sorbent and matrix for the enrichment and analysis of small molecules by surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS). Extremely low detection limits were accomplished for cetyltrimethylammonium bromide (1 fg·mL−1), and Rhodamine B (1 fg·mL−1) in water, and Malachite Green and its metabolite in fish blood and fish extracts (pg·mL−1 concentrations).

Graphical abstract

Schematic representation of cobalt-doped nanoporous carbons (Co-NPCs) applied as SALDI matrix for analysis of toxic contaminants in fish and receipt papers. The Co-NPCs have a high desorption/ionization efficiency and low limit of detection.


Cobalt nanoparticles Carbon dodecahedrons Receipt papers Carassius auratus Toxic contaminants Mass spectrometry 



This work was supported by a grant from National Natural Science Foundation of China (21874038).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

604_2019_3816_MOESM1_ESM.docx (890 kb)
ESM 1 (DOCX 890 kb)


  1. 1.
    Yang YH, Chan AL, Lavallo V, Cheng Q (2016) Quantitation of alpha-glucosidase activity using fluorinated carbohydrate Array and MALDI-TOF-MS. ACS Appl Mater Interfaces 8:2872–2878CrossRefGoogle Scholar
  2. 2.
    Shi C, Meng J, Deng C (2012) Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS. Chem Commun 48:2418–2420CrossRefGoogle Scholar
  3. 3.
    Zhen D, Gao C, Zhu B, Zhou Q, Li C, Chen P, Cai Q (2018) Preparation of Bi0.15Fe0.15TiO2 nanocomposites for the highly selective enrichment of Phosphopeptides. Anal Chem 90:12414–12421CrossRefGoogle Scholar
  4. 4.
    Liu R, Liu J, Zhou X, Jiang G (2011) Cysteine modified small ligament au Nanoporous film: An easy fabricating and highly efficient surface-assisted laser desorption/ionization substrate. Anal Chem 83:3668–3674CrossRefGoogle Scholar
  5. 5.
    Li Z, Zhang Y, Xin Y, Bai Y, Zhou H, Liu H (2014) A lithium-rich composite metal oxide used as a SALDI-MS matrix for the determination of small biomolecules. Chem Commun 50:15397–15399CrossRefGoogle Scholar
  6. 6.
    Lu W, Li R, Shuang S, Dong C, Cai Z (2016) Facile synthesis of N-doped carbon dots as a new matrix for detection of Hydroxy-polycyclic aromatic hydrocarbons by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. ACS Appl Mater Interfaces 8:12976–12984CrossRefGoogle Scholar
  7. 7.
    Liu Q, Cheng M, Wang J, Jiang G (2015) Graphene oxide nanoribbons: improved synthesis and application in MALDI mass spectrometry. Chem 21:5594–5599CrossRefGoogle Scholar
  8. 8.
    Zhou XZ, Wei YY, He QY, Boey F, Zhang QC, Zhang H (2010) Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chem Commun 46:6974–6976CrossRefGoogle Scholar
  9. 9.
    Nouri N, Khorram P, Sereshti H (2019) Applications of three-dimensional graphenes for preconcentration, extraction, and sorption of chemical species: a review. Microchim Acta 186:232–246CrossRefGoogle Scholar
  10. 10.
    Huang X, Liu Q, Huang XY, Nie Z, Ruan T, Du YG, Jiang GB (2017) Fluorographene as a mass spectrometry probe for high-throughput identification and screening of emerging chemical contaminants in complex samples. Anal Chem 89:1307–1314CrossRefGoogle Scholar
  11. 11.
    Finkel NH, Prevo BG, Velev OD, He L (2005) Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry. Anal Chem 77:1088–1095CrossRefGoogle Scholar
  12. 12.
    Huang YF, Chang HT (2006) Nile red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 78:1485–1493CrossRefGoogle Scholar
  13. 13.
    Chiu TC, Chang LC, Chiang CK, Chang HT (2008) Determining estrogens using surface-assisted laser desorption/ionization mass spectrometry with silver nanoparticles as the matrix. J Am Soc Mass Spectrom 19:1343–1346CrossRefGoogle Scholar
  14. 14.
    Gao C, Zhen D, He N, An Z, Zhou Q, Li C, Grimes CA, Cai Q (2019) Two-dimensional TiO2 nanoflakes enable rapid SALDI-TOF-MS detection of toxic small molecules (dyes and their metabolites) in complex environments. Talanta 196:1–8CrossRefGoogle Scholar
  15. 15.
    Watanabe T, Kawasaki H, Yonezawa T, Arakawa R (2010) Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J Mass Spectrom 43:1063–1071CrossRefGoogle Scholar
  16. 16.
    McAlpin CR, Voorhees KJ, Corpuz AR, Richards RM (2012) Analysis of lipids: metal oxide laser ionization mass spectrometry. Anal Chem 84:7677–7683CrossRefGoogle Scholar
  17. 17.
    Kailasa SK, Wu HF (2013) Surface-assisted laser desorption-ionization mass spectrometry of;oligosaccharides using magnesium oxide nanoparticles as a matrix. Microchim Acta 180:405–413CrossRefGoogle Scholar
  18. 18.
    Wang S, Niu H, Zeng T, Zhang X, Cao D, Cai Y (2017) Rapid determination of small molecule pollutants using metal-organic frameworks as adsorbent and matrix of MALDI-TOF-MS. Microporous Mesoporous Mat 239:390–395CrossRefGoogle Scholar
  19. 19.
    Liu HL, Chang YJ, Fan T, Gu ZY (2016) Two-dimensional metal-organic framework nanosheets as a matrix for laser desorption/ionization of small molecules and monitoring enzymatic reactions at high salt concentrations. Chem Commun 52:12984–12987CrossRefGoogle Scholar
  20. 20.
    Min Q, Zhang X, Chen X, Li S, Zhu JJ (2014) N-doped graphene: An alternative carbon-based matrix for highly efficient detection of small molecules by negative ion MALDI-TOF MS. Anal Chem 86:9122–9130CrossRefGoogle Scholar
  21. 21.
    Nazari S, Mehri A, Hassannia AS (2017) Fe3O4-modified graphene oxide as a sorbent for sequential magnetic solid phase extraction and dispersive liquid phase microextraction of thallium. Microchim Acta 184:3239–3246CrossRefGoogle Scholar
  22. 22.
    Tanaka K, Waki H, Ido Y, Akita S, Yoshida T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153CrossRefGoogle Scholar
  23. 23.
    Li Y, Liu J, Chen C, Zhang X, Chen J (2017) Preparation of NiCoP hollow quasi-Polyhedra and their Electrocatalytic properties for hydrogen evolution in alkaline solution. ACS Appl Mater Interfaces 9:5982–5991CrossRefGoogle Scholar
  24. 24.
    Meng J, Niu C, Xu L, Li J, Liu X, Wang X, Wu Y, Xu X, Chen W, Li Q, Zhu Z, Zhao D, Mai L (2017) General oriented formation of carbon nanotubes from metal-organic frameworks. J Am Chem Soc 139:8212–8221CrossRefGoogle Scholar
  25. 25.
    Mahmood A, Guo WH, Tabassum H, Zou RQ (2016) Metal-organic framework-based nanomaterials for Electrocatalysis. Adv Energy Mater 6:1600423–1600450CrossRefGoogle Scholar
  26. 26.
    Zhang X, Jiang W, Song D, Liu Y, Geng J, Li F (2009) Preparation and catalytic activity of Co/CNTs nanocomposites via microwave irradiation. Propell Explos Pyrot 34:151–154CrossRefGoogle Scholar
  27. 27.
    Lin Z, Zheng J, Lin G, Tang Z, Yang X, Cai Z (2015) Negative ion laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules using graphitic carbon nitride Nanosheet matrix. Anal Chem 87:8005–8012CrossRefGoogle Scholar
  28. 28.
    Wang J, Liu Q, Gao Y, Wang Y, Guo L, Jiang G (2015) High-throughput and rapid screening of low-mass hazardous compounds in complex samples. Anal Chem 87:6931–6936CrossRefGoogle Scholar
  29. 29.
    Yalcin T, Wallace WE, Guttman CM, Liang L (2002) Metal powder substrate-assisted laser desorption/ionization mass spectrometry for polyethylene analysis. Anal Chem 74:4750–4756CrossRefGoogle Scholar
  30. 30.
    Wang J, Liu Q, Gao Y, Wang YW, Guo LQ, Jiang GB (2015) High-throughput and rapid screening of low-mass hazardous compounds in complex samples. Anal Chem 87:6931–6936CrossRefGoogle Scholar
  31. 31.
    Gulbakan B, Yasun E, Shukoor MI, Zhu Z, You M, Tan X, Sanchez H, Powell DH, Dai H, Tan W (2010) A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide. J Am Chem Soc 132:17408–17410CrossRefGoogle Scholar
  32. 32.
    Inplemeting Council Dirextive 96/23/EC concerning the performance of analytical methods and the interpretation of results, Offical Journal of the European Communities. Brussels. Belgium (2002) 8–36Google Scholar
  33. 33.
    Kim YK, Na HK, Kwack SJ, Ryoo SR, Lee Y, Hong S, Hong S, Heong Y, Min DH (2011) Synergistic effect of graphene oxide/MWCNT films in laser desorption/ionization mass spectrometry of small molecules and tissue imaging. ACS Nano 5:4550–4561CrossRefGoogle Scholar
  34. 34.
    Qiu S, Zhao F, Zenasni Q, Li J, Shih WC (2016) Nanoporous gold disks functionalized with stabilized G-Quadruplex moieties for sensing small molecules. ACS Appl Mater Interfaces 8:29968–29976CrossRefGoogle Scholar
  35. 35.
    Im K, Nguyen D, Kim S, Kong HJ, Kim Y, Park CS, Kwon OS, Yoon H (2017) Graphene-embedded hydrogel nanofibers for detection and removal of aqueous-phase dyes. ACS Appl Mater Interfaces 9:10768–10776CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringQiannan Normal University for NationalitiesDuyunPeople’s Republic of China
  3. 3.Flux Photon CorporationAlpharettaUSA

Personalised recommendations