Microchimica Acta

, 186:668 | Cite as

Fluorometric determination for ofloxacin by using an aptamer and SYBR Green I

  • Haoyang Yi
  • Zhiyu Yan
  • Lumei WangEmail author
  • Xiaotong Zhou
  • Rui Yan
  • Dongwei Zhang
  • Guoqing Shen
  • Shanshan Zhou
Original Paper


A fluorometric method is described for the determination of ofloxacin (OFL). It is based on the use of the fluorescent intercalator SYBR Green I (SG-I). The OFL-aptamer has G-quadruplex structures and can be recognized by SG-I. It results in strong fluorescence of SG-I. If OFL is present, OFL will bind to its aptamer to form stable complexes. This induces the despiralization of partial dsDNA regions, leads to changes in the structure of the aptamer. Thus, SG-I is released from the OFL-aptamer into solution. Hence, the fluorescence of SG-I drops. Fluorescence decreases linearly in the 1.1 to 200 nM OFL concentration range, and the limit of detection is 0.34 nM. The method shows good selectivity to much interference including analogues, hormones, pesticides. It is also effortless and fast with the times of measurement of <40 min. In addition, good recoveries of 91.3–119.0% were found for tap water, river water and artificial urine spiked with OFL with relative standard deviation (RSD) of ≤11.6%.

Graphical abstract

A sensitive fluorometric method is developed for ofloxacin (OFL) detection in aqueous samples based on the fluorescence intensity change of SYBR Green I (SG-I) with or without OFL.


Fluorometry SG-I Detection G-quadruplex Quinolones Fluoroquinolones Antibiotics Assay 



This work was sponsored by the National Key Research and Development Program of China (2017YFD0800704), the National Natural Science Foundation of China (21876109 & 41877494), and the Natural Science Foundation of Zhejiang Province (LY18B070029).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

604_2019_3788_MOESM1_ESM.docx (608 kb)
ESM 1 (DOCX 607 kb)


  1. 1.
    Mitani K, Kataoka H (2006) Determination of fluoroquinolones in environmental waters by in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry. Anal Chim Acta 562(1):16–22CrossRefGoogle Scholar
  2. 2.
    Hooper DC, Wolfson JS (1985) The fluoroquinolones: pharmacology, clinical uses, and toxicities in humans. Antimicrob Agents Ch 28(5):716–721CrossRefGoogle Scholar
  3. 3.
    Chen T, Huang K, Chen J (2012) An electrochemical approach to simultaneous determination of acetaminophen and Ofloxacin. B Environ Contam Tox 89(6):1284–1288CrossRefGoogle Scholar
  4. 4.
    Wong A, Silva TA, Vicentini FC, Fatibello-Filho O (2016) Electrochemical sensor based on graphene oxide and ionic liquid for ofloxacin determination at nanomolar levels. Talanta 161(1):333–341CrossRefPubMedGoogle Scholar
  5. 5.
    Timofeeva I, Timofeev S, Moskvin L, Bulatov A (2017) A dispersive liquid-liquid microextraction using a switchable polarity dispersive solvent. Automated HPLC-FLD determination of ofloxacin in chicken meat. Anal Chim Acta 949(1):35–42CrossRefPubMedGoogle Scholar
  6. 6.
    Chan KP, Chu KO, Lai WW, Choy KW, Wang CC, Lam DS, Pang CP (2006) Determination of ofloxacin and moxifloxacin and their penetration in human aqueous and vitreous humor by using high-performance liquid chromatography fluorescence detection. Anal Biochem 353(1):30–36CrossRefPubMedGoogle Scholar
  7. 7.
    Sun H, He P, Lv Y, Liang S (2007) Effective separation and simultaneous determination of seven fluoroquinolones by capillary electrophoresis with diode-array detector. J Chromatogr B 852(1–2):145–151CrossRefGoogle Scholar
  8. 8.
    Wu F, Xu F, Chen L, Jiang B, Sun W, Wei X (2016) Cuprous oxide/nitrogen-doped graphene nanocomposites as electrochemical sensors for ofloxacin determination. CHEM Res Chinese U 32(3):468–473CrossRefGoogle Scholar
  9. 9.
    Pagani AP, Ibañez GA (2019) Analytical approach for the simultaneous determination of quinolones in edible animal products. Modeling pH–modulated fluorescence excitation–emission matrices four–way arrays. Talanta 192(15):52–60CrossRefPubMedGoogle Scholar
  10. 10.
    Wang X, Li Y, Li R, Yang H, Zhou B, Wang X, Xie Y (2019) Comparison of chlorination behaviors between norfloxacin and ofloxacin: reaction kinetics, oxidation products and reaction pathways. Chemosphere 215:124–132CrossRefPubMedGoogle Scholar
  11. 11.
    Vakh C, Pochivalov A, Koronkiewicz S, Kalinowski S, Postnov V, Bulatov A (2019) A chemiluminescence method for screening of fluoroquinolones in milk samples based on a multi-pumping flow system. Food Chem 270(1):10–16CrossRefPubMedGoogle Scholar
  12. 12.
    Yan Z, Yi H, Wang L, Zhou X, Yan R, Zhang D, Wang S, Su L, Zhou S (2019) Fluorescent aptasensor for ofloxacin detection based on the aggregation of gold nanoparticles and its effect on quenching the fluorescence of rhodamine B. Spectrochim Acta A 221(5):117203CrossRefGoogle Scholar
  13. 13.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (New York, NY) 249(4968):505–510CrossRefGoogle Scholar
  15. 15.
    Abraham KM, Roueinfar M, Ponce AT, Lussier ME, Benson DB, Hong KL (2018) In vitro selection and characterization of a single-stranded DNA aptamer against the herbicide atrazine. Acs Omega 3(10):13576–13583CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xiao S, Hu P, Li Y, Huang C, Huang T, Xiao G (2009) Aptamer-mediated turn-on fluorescence assay for prion protein based on guanine quenched fluophor. Talanta 79(5):1283–1286CrossRefPubMedGoogle Scholar
  17. 17.
    Yu F, Li H, Sun W, Zhao Y, Xu D, He F (2019) Selection of aptamers against Lactoferrin based on silver enhanced and fluorescence-activated cell sorting. Talanta 193(1):110–117CrossRefPubMedGoogle Scholar
  18. 18.
    Liu K, Yan X, Mao B, Wang S, Deng L (2016) Aptamer-based detection of Salmonella enteritidis using double signal amplification by Klenow fragment and dual fluorescence. Microchim Acta 183(2):643–649CrossRefGoogle Scholar
  19. 19.
    Reinemann C, von Fritsch UF, Rudolph S, Strehlitz B (2016) Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosens Bioelectron 77:1039–1047CrossRefPubMedGoogle Scholar
  20. 20.
    Pilehvar S, Reinemann C, Bottari F, Vanderleyden E, Van Vlierberghe S, Blust R, Strehlitz B, De Wael K (2017) A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sensors Actuators B Chem 240:1024–1035CrossRefGoogle Scholar
  21. 21.
    Zhou X, Wang L, Shen G, Zhang D, Xie J, Mamut A, Huang W, Zhou S (2018) Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles. Microchim Acta 185(7):355CrossRefGoogle Scholar
  22. 22.
    Pu W, Zhao H, Huang C, Wu L, Xua D (2012) Fluorescent detection of silver(I) and cysteine using SYBR Green I and a silver(I)-specific oligonucleotide. Microchim Acta 177(1):137–144CrossRefGoogle Scholar
  23. 23.
    Lv L, Li D, Liu R, Cui C, Guo Z (2017) Label-free aptasensor for ochratoxin A detection using SYBR Gold as a probe. Sensors Actuators B Chem 246:647–652CrossRefGoogle Scholar
  24. 24.
    Yang C, Bie J, Zhang X, Yan C, Li H, Zhang M, Su R, Zhang X, Sun C (2018) A label-free aptasensor for the detection of tetracycline based on the luminescence of SYBR Green I. Spectrochim Acta A 202(5):382–388CrossRefGoogle Scholar
  25. 25.
    Cai Y, Cai Y, Mou S, Lu Y (2006) High performance liquid chromatography-ultraviolet photometric detection for the simultaneous determination of cephalosporins in human urine and bovine milk. Chin J Anal Chem 34(6):745–748Google Scholar
  26. 26.
    Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 32(12):e103CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Vitzthum F, Geiger G, Bisswanger H, Brunner H, Bernhagen J (1999) A quantitative fluorescence-based microplate assay for the determination of double-stranded DNA using SYBR Green I and a standard ultraviolet transilluminator gel imaging system. Anal Biochem 276(1):59–64CrossRefPubMedGoogle Scholar
  28. 28.
    Yang Q, Li F, Huang Y, Xu H, Tang L, Wang L, Fan C (2013) Highly sensitive and selective detection of silver(I) in aqueous solution with silver(I)-specific DNA and Sybr green I. Analyst 138(7):2057–2060CrossRefPubMedGoogle Scholar
  29. 29.
    Masiero S, Trotta R, Pieraccini S, De Tito S, Perone R, Randazzo A, Spada GP (2010) A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures. Org Biomol Chem 8(12):2683–2692CrossRefPubMedGoogle Scholar
  30. 30.
    Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34(19):5402–5415CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lan L, Wang R, Liu L, Cheng L (2019) A label-free colorimetric detection of microRNA via G-quadruplex-based signal quenching strategy. Anal Chim Acta 15(7):6260–6265Google Scholar
  32. 32.
    Xu H, Zhan S, Zhang D, Xia B, Zhan X, Wang L, Zhou P (2015) A label-free fluorescent sensor for the detection of Pb2+ and Hg2+. Anal Methods-UK 7(15):6260–6265CrossRefGoogle Scholar
  33. 33.
    Kypr J, Kejnovska I, Renciuk D, Vorlickova M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37(6):1713–1725CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhan S, Xu H, Zhang W, Zhan X, Wu Y, Wang L, Zhou P (2015) Sensitive fluorescent assay for copper (II) determination in aqueous solution using copper-specific ssDNA and Sybr Green I. Talanta 142(1):176–182CrossRefPubMedGoogle Scholar
  35. 35.
    Zhan S, Wu Y, Liu L, Xing H, He L, Zhan X, Luo Y, Zhou P (2013) A simple fluorescent assay for lead(ii) detection based on lead(ii)-stabilized G-quadruplex formation. RSC Adv 3(38):16962CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research CenterShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Meteorological Bureau of LiupanshuiLiupanshuiPeople’s Republic of China
  3. 3.College of EnvironmentZhejiang University of TechnologyHangzhouPeople’s Republic of China

Personalised recommendations