Microchimica Acta

, 186:681 | Cite as

Simultaneous electrochemical determination of dopamine and epinephrine using gold nanocrystals capped with graphene quantum dots in a silica network

  • Victor Vinoth
  • Lakshmi Nochur Natarajan
  • Ramalinga Viswanathan Mangalaraja
  • Héctor ValdésEmail author
  • Sambandam AnandanEmail author
Original Paper


Gold nanocrystals (AuNCs) were synthesized by economical and green strategy in aqueous medium by using N[3(trimethoxysilyl)propyl]ethylenediamine (TMSPED) as both a reducing and stabilizing mediator to avoid the aggregation of gold nanocrystals. Then, the AuNCs were capped with graphene quantum dots (GQDs) using an ultrasonic method. The resulting nanocomposites of GQD-TMSPED-AuNCs were characterized by X-ray photoelectron, X-ray diffraction, Raman, UV-vis and FT-IR spectroscopies. The size and shape of the nanocomposites were confirmed by using transmission electron microscopy and atomic force microscopy. The GQD-TMSPED-AuNCs placed on a glassy carbon electrode enable simultaneous determination of dopamine (DA) and epinephrine (EP) with peak potentials at 0.21 and 0.30 V (vs. Ag/AgCl). The response is linear in the 5 nM – 2.1 μM (DA) and 10 nM – 4.0 μM (EP) concentration ranges, with detection limits of 5 and 10 nM, respectively. The sensor shows good selectivity toward DP and EP in the presence of other molecules, facilitating its rapid detection in practical applications.

Graphical abstract

Schematic representation of gold nanocrystals capped with graphene quantum dots in the modified electrodes for simultaneous detection of dopamine and epinephrine.


Catecholamines N-[3(trimethoxysilyl)propyl]ethylenediamine Nanocomposites Electrochemical sensors Drug analysis 



The research described herein was financially supported by the Department of Science and Technology, India under Nanomission scheme (SR/NM/NS-1024/2016). The authors V. Vinoth and H. Valdés gratefully acknowledge to Chile CONICYT/FONDECYT Post-doctoral project no. 3190256, for the financial assistance.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3779_MOESM1_ESM.docx (4.9 mb)
ESM 1 (DOCX 5045 kb)


  1. 1.
    Lotharius J, Brundin P (2002) Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3:932–942CrossRefGoogle Scholar
  2. 2.
    Maas R, Wassenberg T, Lin JP, van de Warrenburg BPC, Willemsen M (2017) L-Dopa in dystonia: a modern perspective. Neurology 88(19):1865–1871CrossRefGoogle Scholar
  3. 3.
    Zheng JW, Yang Y, Tian SH, Chen J, Wilson FAW, Ma YY (2005) The dynamics of hippocampal sensory gating during the development of morphine dependence and withdrawal in rats. Neurosci Lett 382(1–2):164–168CrossRefGoogle Scholar
  4. 4.
    Cincotto FH, Canevari TC, Campos AM, Landers R, Machado SAS (2014) Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with ag nanoparticles. Analyst 139:4634–4640CrossRefGoogle Scholar
  5. 5.
    Kang JZ, Yin XB, Yang XR, Wang EK (2005) Electrochemiluminescence quenching as an indirect method for detection of dopamine and epinephrine with capillary electrophoresis. Electrophoresis 26:1732–1736CrossRefGoogle Scholar
  6. 6.
    Carrera V, Sabater E, Vilanova E, Sogorb MA (2007) A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures. J Chromatogr B Analyt Technol Biomed Life Sci 847:88–94CrossRefGoogle Scholar
  7. 7.
    Wang Y, Chen Z-Z (2009) A novel poly(taurine) modified glassy carbon electrode for the simultaneous determination of epinephrine and dopamine. Colloids Surf B 74:322–327CrossRefGoogle Scholar
  8. 8.
    Sadeghi R, Karimi-Maleh H, Bahari A, Taghavi M (2013) A novel biosensor based on ZnO nanoparticle/1,3- dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine. Phys Chem Chem Phys 51:704–714Google Scholar
  9. 9.
    Tavakkoli N, Soltani N, Shahdost-fard F, Ramezani M, Salavati H, Jalali MR (2018) Simultaneous voltammetric sensing of acetaminophen, epinephrine and melatonin using a carbon paste electrode modified with zinc ferrite nanoparticles. Microchim Acta 185(10):479CrossRefGoogle Scholar
  10. 10.
    Khalilzadeh MA, Karimi-Maleh H, Gupta VK (2015) A nanostructure based electrochemical sensor for square wave Voltammetric determination of L-cysteine in the presence of high concentration of folic acid. Electroanal 27:1766–1773CrossRefGoogle Scholar
  11. 11.
    Shi J, Claussen JC, McLamore ES, Haque A, Jaroch D, Diggs AR, Calvo-Marzal P, Rickus JL, Porterfield DM (2011) A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors. Nanotechnology 22(35):355502 (1-10)CrossRefGoogle Scholar
  12. 12.
    Atta NF, Galal A, Abu-Attia FM, Azaba SM (2011) Simultaneous determination of paracetamol and neurotransmitters in biological fluids using a carbon paste sensor modified with gold nanoparticles. J Mater Chem 21:13015–13024CrossRefGoogle Scholar
  13. 13.
    Wang HS, Huang DQ, Liu RM (2004) Study on the electrochemical behavior of epinephrine at a poly(3-methylthiophene)-modified glassy carbon electrode. J Electroanal Chem 570:83–90CrossRefGoogle Scholar
  14. 14.
    Lu X, Li Y, Du J, Zhou X, Xue Z, Liu X, Wang Z (2011) A novel nanocomposites sensor for epinephrine detection in the presence of uric acids and ascorbic acids. Electrochim Acta 56:7261–7266CrossRefGoogle Scholar
  15. 15.
    Shi J, McLamoree ES, Porterfield DM (2013) Nanomaterial-based self-referencing microbiosensors for cell and tissue physiology research. Biosens Bioelectron 40:127–134CrossRefGoogle Scholar
  16. 16.
    Vinoth V, Wu JJ, Asiri AM, Anandan S (2017) Sonochemical synthesis of silver nanoparticles anchored reduced graphene oxide nanosheets for selective and sensitive detection of glutathione. Ultrason Sonochem 39:363–373CrossRefGoogle Scholar
  17. 17.
    Rajabzade H, Daneshgar P, Tazikeh E, Mehrabian RZE (2012) Functionalized carbon nanotubes with gold nanoparticles to fabricate a sensor for hydrogen peroxide determination. J Chem 9:2540–2549Google Scholar
  18. 18.
    Kou R, Shao YY, Wang DH, Engelhard MH, Kwak JHJ, Viswanathan V, Wang CM, Lin YH, Wang Y, Aksay IA, Liu J (2009) Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11:954–957CrossRefGoogle Scholar
  19. 19.
    Vinoth V, Rozario TMD, Wu JJ, Anandan S, Ashokkumar M (2017) Graphene quantum dots anchored gold Nanorods for electrochemical detection of glutathione. ChemistrySelect 2:4744–4752CrossRefGoogle Scholar
  20. 20.
    Chang Y, Braun A, Deangelis A, Kaneshiro J, Gaillard N (2011) Effect of thermal treatment on the crystallographic, surface energetics, and photoelectrochemical properties of reactively cosputtered copper tungstate for water splitting. J Phys Chem C 115:25490–25495CrossRefGoogle Scholar
  21. 21.
    Wang X, Sun G, Li N, Chen P (2016) Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev 45:2239–2262CrossRefGoogle Scholar
  22. 22.
    Gedanken A (2014) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55CrossRefGoogle Scholar
  23. 23.
    Byeon JH, Kim Y-W (2013) Ultrasound-assisted copper deposition on a polymer membrane and application for methanol steam reforming. Ultrason Sonochem 20:472–477CrossRefGoogle Scholar
  24. 24.
    Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743CrossRefGoogle Scholar
  25. 25.
    Valles C, Drummond C, Saadaoui H, Furtado CA, He M, Roubeau O, Ortolani L, Monthioux M, Penicaud A (2008) Solutions of negatively charged graphene sheets and ribbons. J Am Chem Soc 130:15802–15804CrossRefGoogle Scholar
  26. 26.
    Xue Q, Huang H, Wang L, Chen ZW, Wu MH, Li Z, Pan DY (2013) Nearly monodisperse graphene quantum dots fabricated by amine-assisted cutting and ultrafiltration. Nanoscale 5:12098–12103CrossRefGoogle Scholar
  27. 27.
    Deng L, Liu L, Zhu C, Li D, Dong S (2013) Hybrid gold nanocube@silica@graphene-quantum-dot superstructures: synthesis and specific cell surface protein imaging applications. Chem Commun 49:2503–2505CrossRefGoogle Scholar
  28. 28.
    Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6:5102–5110CrossRefGoogle Scholar
  29. 29.
    Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87(3):1903–1910CrossRefGoogle Scholar
  30. 30.
    He GQ, Song Y, Liu K, Walter A, Chen S, Chen SW (2013) Oxygen reduction catalyzed by platinum nanoparticles supported on graphene quantum dots. ACS Catal 3:831–838CrossRefGoogle Scholar
  31. 31.
    Zaikovski V, Sorensen CM, Klabunde KJ (2003) Face-centered cubic and hexagonal closed-packed nanocrystal Superlattices of gold nanoparticles prepared by different methods. J Phys Chem B107:7441–7448Google Scholar
  32. 32.
    LCS F-F, DAC B, Filho OF, Banks CE (2014) Electroanalytical performance of a freestanding three dimensional graphene foam electrode. Electroanal 26:93–102CrossRefGoogle Scholar
  33. 33.
    Ito M, Kotaro Hatta K, Usui C, Arai H (2012) Urine catecholamine levels are not influenced by electro-convulsive therapy in depression or schizophrenia over the long term. Psychiat Clin Neuros 66:602–610CrossRefGoogle Scholar
  34. 34.
    Xu F, Gao MN, Wang L, Shi GY, Zhang W, Jin LT (2001) Sensitive determination of dopamine on poly(aminobenzoic acid) modified electrode and the application toward an experimental parkinsonian animal model. Talanta 55:329–336CrossRefGoogle Scholar
  35. 35.
    Grouzmann E, Tschopp O, Triponez F, Matter M, Bilz S, Brandle M (2015) Catecholamine metabolism in Paraganglioma and Pheochromocytoma: similar tumors in different sites? Plos One 10(5):e0125426CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanomaterials and Solar Energy Conversion Lab, Department of ChemistryNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Laboratorio de Tecnologías Limpias, Facultad de IngenieríaUniversidad Católica de la Santísima ConcepciónConcepciónChile
  3. 3.Advanced Ceramics and Nanotechnology Laboratory, Department of Materials EngineeringUniversity of ConcepcionConcepcionChile

Personalised recommendations