Advertisement

Microchimica Acta

, 186:671 | Cite as

Advancements in electrochemical sensing of hydrogen peroxide, glucose and dopamine by using 2D nanoarchitectures of layered double hydroxides or metal dichalcogenides. A review

  • Ayesha Aziz
  • Muhammad Asif
  • Ghazala Ashraf
  • Muhammad Azeem
  • Irfan Majeed
  • Muhammad Ajmal
  • Junlei Wang
  • Hongfang LiuEmail author
Review Article
  • 88 Downloads

Abstract

This review (with 105 references) describes the progress that has been made in the past few years in the use of 2D nanoarchitectures in electrochemical sensors for the clinically highly significant parameters hydrogen peroxide, glucose and dopamine. Following an introduction into the field, we summarize the improvements in electrochemical sensors that can be accomplished by using such nanomaterials, with a specific focus on sensors for in-vitro diagnostics. A further large section covers sensors based on the use of layered double hydroxides (LDHs), with subsections on sensors for hydrogen peroxide, glucose and dopamine. Dichalcogenides based electrochemical sensors are treated in next section, again with subsections on hydrogen peroxide, glucose and dopamine. We also summarize key sensor parameters including limits of detection, linear ranges and real time applications in pharmaceutical, environmental and clinical fields. The next section summarizes the work related to sensing of hydrogen peroxide released from different live cells as signalling molecule indicating cellular stress. The review concludes with a discussion of current challenges and future perspectives.

Graphical abstract

Schematic illustration of layered double hydroxides (LDHs) and dichalcogenides based electrochemical sensors for sensitive determination of hydrogen peroxide (H2O2), glucose and dopamine (DA) from biological fluids as biomarkers for early diagnosis.

Keywords

2D Nanoarchitectures Electrochemical sensors Cyclic voltammetry In-vitro diagnosis Biomolecules determination Live cells Early diagnostics Cancer detection 

Notes

Acknowledgements

This work was supported by The National Key Research and Development Program of China (2018YFF0215002), National Natural Science Foundation of China (Project No. U1662114). The Foundation of Hubei Key Laboratory of Material Chemistry and Service Failure (2017), Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education (2018).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. 1.
    Xiao F, Wang L, Duan H (2016) Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnol Adv 34:234–249PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Asif M, Aziz A, Dao AQ, Hakeem A, Wang H, Dong S, Zhang G, Xiao F, Liu H (2015) Real-time tracking of hydrogen peroxide secreted by live cells using MnO2 nanoparticles intercalated layered doubled hydroxide nanohybrids. Anal Chim Acta 898:34–41PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kim DM, Cho SJ, Cho CH, Kim KB, Kim MY, Shim YB (2016) Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide. Biosens Bioelectron 79:165–172PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Asif M, Raza Naqvi SA, Sherazi TA, Ahmad M, Zahoor AF, Shahzad SA, Hussain Z, Mahmood H, Mahmood N (2017) Antioxidant, antibacterial and antiproliferative activities of pumpkin (cucurbit) peel and puree extracts-an in vitro study. Pak J Pharm Sci 30:127–133Google Scholar
  5. 5.
    Xie F, Liu T, Xie L, Sun X, Luo Y (2018) Metallic nickel nitride nanosheet: an efficient catalyst electrode for sensitive and selective non-enzymatic glucose sensing. Sensors Actuators B Chem 255:2794–2799CrossRefGoogle Scholar
  6. 6.
    Mir TA, Akhtar MH, Gurudatt NG, Kim JI, Choi CS, Shim YB (2015) An amperometric nanobiosensor for the selective detection of K(+)-induced dopamine released from living cells. Biosens Bioelectron 68:421–428PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Wang L, Xiong Q, Xiao F, Duan H (2017) 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens Bioelectron 89:136–151PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Asif M, Aziz A, Wang Z, Ashraf G, Wang J, Luo H, Chen X, Xiao F, Liu H (2019) Hierarchical CNTs@CuMn layered double hydroxide Nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal Chem 91:3912–3920PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Pan T, Xu S, Dou Y, Liu X, Li Z, Han J, Yan H, Wei M (2015) Remarkable oxygen barrier films based on a layered double hydroxide/chitosan hierarchical structure. J Mater Chem A 3:12350–12356CrossRefGoogle Scholar
  10. 10.
    Yuan M, Liu A, Zhao M, Dong W, Zhao T, Wang J, Tang W (2014) Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor. Sensors Actuators B Chem 190:707–714CrossRefGoogle Scholar
  11. 11.
    Asif M, Aziz A, Azeem M, Wang Z, Ashraf G, Xiao F, Chen X, Liu H (2018) A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Adv Colloid Interf Sci 262:21–38CrossRefGoogle Scholar
  12. 12.
    Zhan T, Yang Q, Zhang Y, Wang X, Xu J, Hou W (2014) Structural characterization and electrocatalytic application of hemoglobin immobilized in layered double hydroxides modified with hydroxyl functionalized ionic liquid. J Colloid Interface Sci 433:49–57PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Wang Y, Wang Z, Rui Y, Li M (2015) Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: direct electrochemistry and hydrogen peroxide sensing. Biosens Bioelectron 64:57–62PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zhou J, Min M, Liu Y, Tang J, Tang W (2018) Layered assembly of NiMn-layered double hydroxide on graphene oxide for enhanced non-enzymatic sugars and hydrogen peroxide detection. Sensors Actuators B Chem 260:408–417CrossRefGoogle Scholar
  15. 15.
    Habibi B, Farshi Azhar F, Rezvani Z, Fakkar J (2017) Ni-Al/layered double hydroxide/Ag nanoparticles composite modified carbon-paste electrode as a renewable electrode and novel electrochemical sensor for hydrogen peroxide. Anal Methods 340:44–51Google Scholar
  16. 16.
    Asif M, Haitao W, Shuang D, Aziz A, Zhang G, Xiao F, Liu H (2017) Metal oxide intercalated layered double hydroxide nanosphere: with enhanced electrocatalyic activity towards H2O2 for biological applications. Sensors Actuators B Chem 239:243–252CrossRefGoogle Scholar
  17. 17.
    Xu L, Lian M, Chen X, Lu Y, Yang W (2017) Amperometric sensing of hydrogen peroxide via an ITO electrode modified with gold nanoparticles electrodeposited on a CoMn-layered double hydroxide. Microchim Acta 184:3989–3996CrossRefGoogle Scholar
  18. 18.
    Heli H, Pishahang J, Amiri HB (2016) Synthesis of hexagonal CoAl-layered double hydroxide nanoshales/carbon nanotubes composite for the non-enzymatic detection of hydrogen peroxide. J Electroanal Chem 768:134–144CrossRefGoogle Scholar
  19. 19.
    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng C 41:100–118CrossRefGoogle Scholar
  21. 21.
    Shami Z, Amininasab SM, Shakeri P (2016) Structure-property relationships of nanosheeted 3D hierarchical roughness MgAl-layered double hydroxide branched to an electrospun porous nanomembrane: a superior oil-removing nanofabric. ACS Appl Mater Interfaces 8:28964–28973PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gualandi I, Scavetta E, Vlamidis Y, Casagrande A, Tonelli D (2015) Co/Al layered double hydroxide coated electrode for in flow amperometric detection of sugars. Electrochim Acta 173:67–75CrossRefGoogle Scholar
  23. 23.
    Lu Y, Jiang B, Fang L, Fan S, Wu F, Hu B, Meng F (2017) Highly sensitive nonenzymatic glucose sensor based on 3D ultrathin NiFe layered double hydroxide nanosheets. Electroanalysis 29:1755–1761CrossRefGoogle Scholar
  24. 24.
    Shen W, Sun J, Seah JYH, Shi L, Tang S, Lee HK (2018) Needle-based sampling coupled with colorimetric reaction catalyzed by layered double hydroxide peroxidase mimic for rapid detection of the change of d-glucose levels with time in bananas. Anal Chim Acta 1001:32–39PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hai B, Zou YQ, Guo GB, Wang ZD, Liu YY, Wang XX, Yan H, Ma LT, Bai YC (2017) A novel strategy to prepare LDH networks loaded carbon structure by C-MEMS techniques for glucose detection. Chin Chem Lett 28:149–152CrossRefGoogle Scholar
  26. 26.
    Qian Q, Hu Q, Li L, Shi P, Zhou J, Kong J, Zhang X, Sun G, Huang W (2018) Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination. Sensors Actuators B Chem 257:23–28CrossRefGoogle Scholar
  27. 27.
    Fu S, Fan G, Yang L, Li F (2015) Non-enzymatic glucose sensor based on Au nanoparticles decorated ternary Ni-Al layered double hydroxide/single-walled carbon nanotubes/graphene nanocomposite. Electrochim Acta 152:146–154CrossRefGoogle Scholar
  28. 28.
    Wang X, Zheng Y, Yuan J, Shen J, Hu J, Wang AJ, Wu L, Niu L (2017) Three-dimensional NiCo layered double hydroxide nanosheets array on carbon cloth, facile preparation and its application in highly sensitive enzymeless glucose detection. Electrochim Acta 224:628–635CrossRefGoogle Scholar
  29. 29.
    Eshghi A, Kheirmand M (2017) Graphene/Ni–Fe layered double hydroxide nano composites as advanced electrode materials for glucose electro oxidation. Int J Hydrog Energy 42:15064–15072CrossRefGoogle Scholar
  30. 30.
    Asadian E, Shahrokhian S, Iraji Zad A (2018) Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite. J Electroanal Chem 808:114–123CrossRefGoogle Scholar
  31. 31.
    Samuei S, Fakkar J, Rezvani Z, Shomali A, Habibi B (2017) Synthesis and characterization of graphene quantum dots/CoNiAl-layered double-hydroxide nanocomposite: application as a glucose sensor. Anal Biochem 521:31–39PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Zhao P, Chen C, Ni M, Peng L, Li C, Xie Y, Fei J (2019) Electrochemical dopamine sensor based on the use of a thermosensitive polymer and an nanocomposite prepared from multiwalled carbon nanotubes and graphene oxide. Microchim Acta 186:134CrossRefGoogle Scholar
  33. 33.
    Dhanasekaran T, Padmanaban A, Gnanamoorthy G, Manigandan R, Kumar SP, Stephen A, Narayanan V (2018) Recent advances in polymer supporting layered double hydroxides nanocomposite for electrochemical biosensors. Mater Research Exp 5:014011CrossRefGoogle Scholar
  34. 34.
    Zhang S, Fu Y, Sheng Q, Zheng J (2017) Nickel–cobalt double hydroxide nanosheets wrapped amorphous Ni(OH)2 nanoboxes: development of dopamine sensor with enhanced electrochemical properties. New J Chem 41:13076–13084CrossRefGoogle Scholar
  35. 35.
    Aziz A, Asif M, Azeem M, Ashraf G, Wang Z, Xiao F, Liu H (2019) Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Anal Chim Acta 1047:197–207PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Asif M, Aziz A, Wang H, Wang Z, Wang W, Ajmal M, Xiao F, Chen X, Liu H (2019) Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Microchim Acta 186:61CrossRefGoogle Scholar
  37. 37.
    Yuan J, Xu S, Zeng HY, Cao X, Dan Pan A, Xiao GF, Ding PX (2018) Hydrogen peroxide biosensor based on chitosan/2D layered double hydroxide composite for the determination of H2O2. Bioelectrochem 123:94–102CrossRefGoogle Scholar
  38. 38.
    Hassan M, Jiang Y, Bo X, Zhou M (2018) Sensitive nonenzymatic detection of hydrogen peroxide at nitrogen-doped graphene supported-CoFe nanoparticles. Talanta 188:339–348PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Tao Y, Chang Q, Liu Q, Yang G, Guan H, Chen G, Dong C (2018) Highly sensitive nonenzymatic H2O2 sensor based on NiFe-layered double hydroxides nanosheets grown on Ni foam. Surf Interfaces 12:102–107CrossRefGoogle Scholar
  40. 40.
    Chandrasekaran NI, Manickam M (2019) A sensitive and selective non-enzymatic glucose sensor with hollow Ni-Al-Mn layered triple hydroxide nanocomposites modified Ni foam. Sensors Actuators B Chem 288:188–194CrossRefGoogle Scholar
  41. 41.
    Wang F, Zhang Y, Liang W, Chen L, Li Y, He X (2018) Non-enzymatic glucose sensor with high sensitivity based on Cu-Al layered double hydroxides. Sensors Actuators B Chem 273:41–47CrossRefGoogle Scholar
  42. 42.
    Xu J, Qiao X, Arsalan M, Cheng N, Cao W, Yue T, Sheng Q, Zheng J (2018) Preparation of one dimensional silver nanowire/nickel-cobalt layered double hydroxide and its electrocatalysis of glucose. J Electroanal Chem 823:315–321CrossRefGoogle Scholar
  43. 43.
    Ejaz A, Joo Y, Jeon S (2017) Fabrication of 1,4-bis (aminomethyl) benzene and cobalt hydroxide @ graphene oxide for selective detection of dopamine in the presence of ascorbic acid and serotonin. Sensors Actuators B Chem 240:297–307CrossRefGoogle Scholar
  44. 44.
    Galindo DLRJ, Arriaga LG, Álvarez A, Arjona N, Dector A, Chavez RAU, Vallejo BV, Ledesma GJ (2018) NiAl layered double hydroxides and PdNiO as multifunctional anodes for prospective self-powered lab-on-a-Chip dopamine sensors. Chem Nano Mat 4:688–697Google Scholar
  45. 45.
    Petit DMD, Quintana C, Vazquez L, del Pozo M, Cuadrado I, Parra AAM, Casero E (2018) Synergistic effect of MoS2 and diamond nanoparticles in electrochemical sensors: determination of the anticonvulsant drug valproic acid. Microchim Acta 185:334CrossRefGoogle Scholar
  46. 46.
    Huang H, Lv L, Xu F, Liao J, Liu S, Wen HR (2017) PrFeO3-MoS2 nanosheets for use in enhanced electro-oxidative sensing of nitrite. Microchim Acta 184:4141–4149CrossRefGoogle Scholar
  47. 47.
    Tang J, Huang Y, Cheng Y, Huang L, Zhuang J, Tang D (2018) Two-dimensional MoS2 as a nano-binder for ssDNA: ultrasensitive aptamer based amperometric detection of Ochratoxin a. Microchim Acta 185:162CrossRefGoogle Scholar
  48. 48.
    Ashraf G, Asif M, Aziz A, Wang Z, Qiu X, Huang Q, Xiao F, Liu H (2019) Nanocomposites consisting of copper and copper oxide incorporated into MoS4 nanostructures for sensitive voltammetric determination of bisphenol A. Microchim Acta 186:337CrossRefGoogle Scholar
  49. 49.
    Huang H, Wang M, Wang Y, Li X, Niu Z, Wang X, Song J (2018) Electrochemical determination of 2,4-dichlorophenol by using a glassy carbon electrode modified with molybdenum disulfide, ionic liquid and gold/silver nanorods. Microchim Acta 185:292CrossRefGoogle Scholar
  50. 50.
    Wu T, Li L, Song G, Ran M, Lu X, Liu X (2019) An ultrasensitive electrochemical sensor based on cotton carbon fiber composites for the determination of superoxide anion release from cells. Microchim Acta 186:198CrossRefGoogle Scholar
  51. 51.
    Sharma AK, Pandey S, Sharma KH, Nerthigan Y, Khan MS, Hang DR, Wu HF (2018) Two dimensional α-MoO3-x nanoflakes as bare eye probe for hydrogen peroxide in biological fluids. Anal Chim Acta 1015:58–65PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Sha R, Vishnu N, Badhulika S (2018) Bimetallic Pt-Pd nanostructures supported on MoS2 as an ultra-high performance electrocatalyst for methanol oxidation and nonenzymatic determination of hydrogen peroxide. Microchim Acta 185:399CrossRefGoogle Scholar
  53. 53.
    Sinha A, Dhanjai TB, Huang Y, Zhao H, Dang X, Chen J, Jain R (2018) MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review. TrAC 102:75–90Google Scholar
  54. 54.
    Zhu L, Zhang Y, Xu P, Wen W, Li X, Xu J (2016) PtW/MoS2 hybrid nanocomposite for electrochemical sensing of H2O2 released from living cells. Biosens Bioelectron 80:601–606PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Dou B, Yang J, Yuan R, Xiang Y (2018) Trimetallic hybrid nanoflower-decorated MoS2 nanosheet sensor for direct in situ monitoring of H2O2 secreted from live cancer cells. Anal Chem 90:5945–5950PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Yoon J, Lee T, Jo J, Oh BK, Choi JW (2017) Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosens Bioelectron 93:14–20PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kim HU, Kim H, Ahn C, Kulkarni A, Jeon M, Yeom GY, Lee MH, Kim T (2015) In situ synthesis of MoS2 on a polymer based gold electrode platform and its application in electrochemical biosensing. RSC Adv 5:10134–10138CrossRefGoogle Scholar
  58. 58.
    Toh RJ, Mayorga MCC, Han J, Sofer Z, Pumera M (2017) Group 6 layered transition-metal dichalcogenides in lab-on-a-chip devices: 1T-phase WS2 for microfluidics non-enzymatic detection of hydrogen peroxide. Anal Chem 89:4978–4985PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Zhao K, Gu W, Zheng S, Zhang C, Xian Y (2015) SDS–MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta 141:47–52PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Yu J, Ma X, Yin W, Gu Z (2016) Synthesis of PVP-functionalized ultra-small MoS2 nanoparticles with intrinsic peroxidase-like activity for H2O2 and glucose detection. RSC Adv 6:81174–81183CrossRefGoogle Scholar
  61. 61.
    Gao Y, Yang F, Yu Q, Fan R, Yang M, Rao S, Lan Q, Yang Z (2019) Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Microchim Acta 186:192CrossRefGoogle Scholar
  62. 62.
    Wang YH, Huang KJ, Wu X (2017) Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review. Biosens Bioelectron 97:305–316PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Su S, Sun H, Xu F, Yuwen L, Fan C, Wang L (2014) Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchim Acta 181:1497–1503CrossRefGoogle Scholar
  64. 64.
    Liu X, Huo X, Liu P, Tang Y, Xu J, Liu X, Zhou Y (2017) Assembly of MoS2 nanosheet-TiO2 nanorod heterostructure as sensor scaffold for photoelectrochemical biosensing. Electrochim Acta 242:327–336CrossRefGoogle Scholar
  65. 65.
    Parlak O, Incel A, Uzun L, Turner APF, Tiwari A (2017) Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosens Bioelectron 89:545–550PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Rohaizad N, Mayorga MCC, Zk S, Pumera M (2017) 1T-phase transition metal dichalcogenides (MoS2, MoSe2, WS2, and WSe2) with fast heterogeneous electron transfer: application on second-generation enzyme-based biosensor. ACS Appl Mater Interfaces 9:40697–40706PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Nirala NR, Prakash R (2018) One step synthesis of AuNPs@ MoS2-QDs composite as a robust peroxidase-mimetic for instant unaided eye detection of glucose in serum, saliva and tear. Sensors Actuators B Chem 263:109–119CrossRefGoogle Scholar
  68. 68.
    Cai S, Han Q, Qi C, Lian Z, Jia X, Yang R, Wang C (2016) Pt 74 Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 8:3685–3693PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Peng J, Weng J (2017) Enhanced peroxidase-like activity of MoS2/graphene oxide hybrid with light irradiation for glucose detection. Biosens Bioelectron 89:652–658PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Zhai Y, Li J, Chu X, Xu M, Jin F, Li X, Fang X, Wei Z, Wang X (2016) MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection. J Alloys Compd 672:600–608CrossRefGoogle Scholar
  71. 71.
    Lin X, Ni Y, Kokot S (2016) Electrochemical and bio-sensing platform based on a novel 3D cu nano-flowers/layered MoS2 composite. Biosens Bioelectron 79:685–692PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Baccarin M, Rowley NSJ, Cavalheiro ETG, Smith GC, Banks CE (2019) Nanodiamond based surface modified screen-printed electrodes for the simultaneous voltammetric determination of dopamine and uric acid. Microchim Acta 186:200CrossRefGoogle Scholar
  73. 73.
    Huang H, Yue Y, Chen Z, Chen Y, Wu S, Liao J, Liu S, Wen HR (2019) Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Microchim Acta 186:189CrossRefGoogle Scholar
  74. 74.
    Sun H, Chao J, Zuo X, Su S, Liu X, Yuwen L, Fan C, Wang L (2014) Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv 4:27625–27629CrossRefGoogle Scholar
  75. 75.
    Huang KJ, Zhang JZ, Liu YJ, Wang LL (2014) Novel electrochemical sensing platform based on molybdenum disulfide nanosheets-polyaniline composites and Au nanoparticles. Sensors Actuators B Chem 194:303–310CrossRefGoogle Scholar
  76. 76.
    Wang X, Ma W, Ge T, Yang T, Jiao K (2016) A reductively treated thin layer MoS2 nanosheet-poly (xanthurenic acid) composite with dramatically enhanced electrochemical performance and extended sensing applications. Electrochim Acta 190:1025–1031CrossRefGoogle Scholar
  77. 77.
    Chao J, Han X, Sun H, Su S, Weng L, Wang L (2016) Platinum nanoparticles supported MoS2 nanosheet for simultaneous detection of dopamine and uric acid. SCIENCE CHINA Chem 59:332–337CrossRefGoogle Scholar
  78. 78.
    Pramoda K, Moses K, Maitra U, Rao C (2015) Superior performance of a MoS2-RGO composite and a borocarbonitride in the electrochemical detection of dopamine, uric acid and adenine. Electroanal 27:1892–1898CrossRefGoogle Scholar
  79. 79.
    Xing L, Ma Z (2016) A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183:257–263CrossRefGoogle Scholar
  80. 80.
    Xia X, Shen X, Du Y, Ye W, Wang C (2016) Study on glutathione’s inhibition to dopamine polymerization and its application in dopamine determination in alkaline environment based on silver selenide/molybdenum selenide/glassy carbon electrode. Sensors Actuators B Chem 237:685–692CrossRefGoogle Scholar
  81. 81.
    Zou HL, Li BL, Luo HQ, Li NB (2017) 0D-2D heterostructures of Au nanoparticles and layered MoS2 for simultaneous detections of dopamine, ascorbic acid, uric acid, and nitrite. Sensors Actuators B Chem 253:352–360CrossRefGoogle Scholar
  82. 82.
    Duan K, Du Y, Feng Q, Ye X, Xie H, Xue M, Wang C (2014) Synthesis of platinum nanoparticles by using molybdenum disulfide as a template and its application to enzyme-like catalysis. Chem Cat Chem 6:1873–1876Google Scholar
  83. 83.
    Yang YJ, Zi J, Li W (2014) Enzyme-free sensing of hydrogen peroxide and glucose at a CuS nanoflowers modified glassy carbon electrode. Electrochim Acta 115:126–130CrossRefGoogle Scholar
  84. 84.
    Zhang K, Sun H, Hou S (2016) Layered MoS2–graphene composites for biosensor applications with sensitive electrochemical performance. Anal Methods 8:3780–3787CrossRefGoogle Scholar
  85. 85.
    Lin Y, Chen X, Lin Y, Zhou Q, Tang D (2015) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide. Microchim Acta 182:1803–1809CrossRefGoogle Scholar
  86. 86.
    Lin D, Li Y, Zhang P, Zhang W, Ding J, Li J, Wei G, Su Z (2016) Fast preparation of MoS2 nanoflowers decorated with platinum nanoparticles for electrochemical detection of hydrogen peroxide. RSC Adv 6:52739–52745CrossRefGoogle Scholar
  87. 87.
    Chao J, Zou M, Zhang C, Sun H, Pan D, Pei H, Su S, Yuwen L, Fan C, Wang L (2015) A MoS2–based system for efficient immobilization of hemoglobin and biosensing applications. Nanotechnol 26:274005CrossRefGoogle Scholar
  88. 88.
    Li X, Du X (2017) Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sensors Actuators B Chem 239:536–543CrossRefGoogle Scholar
  89. 89.
    Geng D, Bo X, Guo L (2017) Ni-doped molybdenum disulfide nanoparticles anchored on reduced graphene oxide as novel electroactive material for a non-enzymatic glucose sensor. Sensors Actuators B Chem 244:131–141CrossRefGoogle Scholar
  90. 90.
    Khataee A, Haddad Irani NM, Hassanzadeh J, Woo JS (2018) Superior peroxidase mimetic activity of tungsten disulfide nanosheets/silver nanoclusters composite: colorimetric, fluorometric and electrochemical studies. J Colloid Interface Sci 515:39–49PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Fang L, Wang F, Chen Z, Qiu Y, Zhai T, Hu M, Zhang C, Huang K (2017) Flower-like MoS2 decorated with Cu2O nanoparticles for non-enzymatic amperometric sensing of glucose. Talanta 167:593–599PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Jeong JM, Yang M, Kim DS, Lee TJ, Choi BG, Kim DH (2017) High performance electrochemical glucose sensor based on three-dimensional MoS2/graphene aerogel. J Colloid Interface Sci 506:379–385PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Li X, Ren K, Zhang M, Sang W, Sun D, Hu T, Ni Z (2019) Cobalt functionalized MoS2/carbon nanotubes scaffold for enzyme-free glucose detection with extremely low detection limit. Sensors Actuators B Chem 293:122–128CrossRefGoogle Scholar
  94. 94.
    Yang T, Chen H, Jing C, Luo S, Li W, Jiao K (2017) Using poly(m-aminobenzenesulfonic acid)-reduced MoS2 nanocomposite synergistic electrocatalysis for determination of dopamine. Sensors Actuators B Chem 249:451–457CrossRefGoogle Scholar
  95. 95.
    Vijayaraj K, Dinakaran T, Lee Y, Kim S, Kim HS, Lee J, Chang SC (2017) One-step construction of a molybdenum disulfide/multi-walled carbon nanotubes/polypyrrole nanocomposite biosensor for the ex-vivo detection of dopamine in mouse brain tissue. Biochem Biophys Res Commun 494:181–187PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Mani V, Govindasamy M, Chen SM, Karthik R, Huang ST (2016) Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchim Acta 183:2267–2275CrossRefGoogle Scholar
  97. 97.
    Yin A, Wei X, Cao Y, Li H (2016) High-quality molybdenum disulfide nanosheets with 3D structure for electrochemical sensing. Appl Surf Sci 385:63–71CrossRefGoogle Scholar
  98. 98.
    Sui N, Li S, Wang Y, Zhang Q, Liu S, Bai Q, Xiao H, Liu M, Wang L, Yu WW (2019) Etched PtCu nanowires as a peroxidase mimic for colorimetric determination of hydrogen peroxide. Microchim Acta 186:186CrossRefGoogle Scholar
  99. 99.
    Zhao TT, Jiang ZW, Zhen SJ, Huang CZ, Li YF (2019) A copper(II)/cobalt(II) organic gel with enhanced peroxidase-like activity for fluorometric determination of hydrogen peroxide and glucose. Microchim Acta 186:168CrossRefGoogle Scholar
  100. 100.
    Liu L, Yang M, Zhao H, Xu Y, Cheng X, Zhang X, Gao S, Song H, Huo L (2019) Co3O4/carbon hollow nanospheres for resistive monitoring of gaseous hydrogen sulfide and for nonenzymatic amperometric sensing of dissolved hydrogen peroxide. Microchim Acta 186:184CrossRefGoogle Scholar
  101. 101.
    Dai H, Chen D, Cao P, Li Y, Wang N, Sun S, Chen T, Ma H, Lin M (2018) Molybdenum sulfide/nitrogen-doped carbon nanowire-based electrochemical sensor for hydrogen peroxide in living cells. Sensors Actuators B Chem 276:65–71CrossRefGoogle Scholar
  102. 102.
    Shu Y, Chen J, Xu Q, Wei Z, Liu F, Lu R, Xu S, Hu X (2017) MoS2 nanosheet–Au nanorod hybrids for highly sensitive amperometric detection of H2O2 in living cells. J Mater Chem B 5:1446–1453CrossRefGoogle Scholar
  103. 103.
    Asif M, Liu H, Aziz A, Wang H, Wang Z, Ajmal M, Xiao F (2017) Core-shell iron oxide-layered double hydroxide: high electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics. Biosens Bioelectron 97:352–359PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Asif M, Aziz A, Ashraf G, Wang Z, Wang J, Azeem M, Chen X, Xiao F, Liu H (2018) Facet-inspired core-shell gold nanoislands on metal oxide octadecahedral heterostructures: high sensing performance toward sulfide in biotic fluids. ACS Appl Mater Interfaces 10:36675–36685PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Hammami M, Soussou A, Idoudi F, Cohen BT, Bouhaouala ZB, Baccar Z (2015) Development of an immunosensor based on layered double hydroxides for MMR Cancer biomarker detection. IEEE Trans Nanobiosci 14:688–693CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Department of ChemistryUniversity of Agriculture FaisalabadFaisalabadPakistan

Personalised recommendations