Advertisement

Microchimica Acta

, 186:658 | Cite as

Sputtering enhanced peroxidase like activity of a dendritic nanochip for amperometric determination of hydrogen peroxide in blood samples

  • Buddhadev Purohit
  • Kuldeep Mahato
  • Ashutosh Kumar
  • Pranjal ChandraEmail author
Original Paper

Abstract

A nonenzymatic electrochemical nanoprobe is described for the fast determination of hydrogen peroxide (H2O2). A sputtered indium tin oxide electrode with a nano-hierarchical 3D gold structure is used. The nanoprobe was characterized by SEM, EDX, TEM, SAED, and electrochemical techniques. Figures of merit include (a) a fast response time (≤ 1.0 s), (b) two linear dynamic ranges that extend from 10−12 M to 10−10 M and from 10−10 M to10−5 M; and (c) a low limit of detection of 9.8 × 10−13 M. The nanoprobe works in the clinical range and was applied for trace analysis of H2O2 in spiked blood samples, and recoveries ranged between 90 and 96%. It has negligible response (p < 0.001, for n = 3) toward glucose, citric acid, ascorbic acid, uric acid, glycine, and alanine. The shelf-lifetime is found to be 12 weeks.

Graphical abstract

Schematic representation of a dendritic nanochip with peroxidase-like activity. It is made from an indium tin oxide electrode with a nanohierarchical gold structure and was used for amperometric determination of hydrogen peroxide.

Keywords

Nanoprobe Nanozyme Ultrafast H2O2 detection Indium tin oxide Free radicals Nano engineering 

Notes

Acknowledgements

This work is supported by DST Ramanujan Fellowship (SB/S2/RJN-042/2015) awarded to Dr. Pranjal Chandra. BP, KM, and AK acknowledge the Ph.D. fellowship from IIT, Guwahati. The authors acknowledge the instrumentation facility provided by CIF, IIT Guwahati.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3773_MOESM1_ESM.docx (376 kb)
ESM 1 (DOCX 376 kb)

References

  1. 1.
    Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS (2011) Redox regulation of protein tyrosine phosphatases : structural and chemical aspects. Antioxid Redox Signal 15:77–97CrossRefGoogle Scholar
  2. 2.
    Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31CrossRefGoogle Scholar
  3. 3.
    Jay H, Bernardo A, Davies KJA (2016) What is the concentration of hydrogen peroxide in blood and plasma ? Arch Biochem Biophys 603:48–53CrossRefGoogle Scholar
  4. 4.
    Liu C, Ding Y, Li Q, Lin Y (2017) Photochemical synthesis of glutathione-stabilized silver nanoclusters for fluorometric determination of hydrogen peroxide. Mikrochim Acta 184:2497–2503CrossRefGoogle Scholar
  5. 5.
    Liu Q, Chen P, Xu Z, Chen M, Ding Y, Yue K, Xu J (2017) A facile strategy to prepare porphyrin functionalized ZnS nanoparticles and their peroxidase-like catalytic activity for colorimetric sensor of hydrogen peroxide and glucose. Sens Actuators B Chem 251:339–348CrossRefGoogle Scholar
  6. 6.
    Luo M, Wang W, Zhao Q, Li M, Chen Y, Lu Z, Liu K, Wang D (2017) Chemiluminescence biosensor for hydrogen peroxide determination by immobilizing horseradish peroxidase onto PVA-co-PE nanofiber membrane. Eur Polym J 91:307–314CrossRefGoogle Scholar
  7. 7.
    Hoshino M, Kamino S, Doi M, Takada S, Mitani S, Yanagihara R, Asano M, Yamaguchi T, Fujita Y (2014) Spectrophotometric determination of hydrogen peroxide with osmium (VIII) and m-carboxyphenylfluorone. Spectrochim Acta Part A Mol Biomol Spectrosc 117:814–816CrossRefGoogle Scholar
  8. 8.
    Mahato K, Maurya PK, Chandra P (2018) Fundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics. 3. Biotech 8:1–14Google Scholar
  9. 9.
    Zhu Y, Chandra P, Shim Y-B (2012) Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine--au nanoparticle--aptamer bioconjugate. Anal Chem 85:1058–1064CrossRefGoogle Scholar
  10. 10.
    Kumar A, Purohit B, Maurya PK et al Engineered Nanomaterial Assisted Signal-amplification Strategies for Enhancing Analytical Performance of Electrochemical Biosensors. Electroanalysis 0:1–16.  https://doi.org/10.1002/elan.201900216
  11. 11.
    Krainer FW, Glieder A (2015) An updated view on horseradish peroxidases: recombinant production and biotechnological applications. Appl Microbiol Biotechnol 99:1611–1625CrossRefGoogle Scholar
  12. 12.
    Ma B, Kong C, Hu X, Liu K, Huang Q, Lv J, Lu W, Zhang X, Yang Z, Yang S (2018) A sensitive electrochemical nonenzymatic biosensor for the detection of H2O2 released from living cells based on ultrathin concave ag nanosheets. Biosens Bioelectron 106:29–36CrossRefGoogle Scholar
  13. 13.
    Liu Y, Shang T, Liu Y, Liu X, Xue Z, Liu X (2018) Highly sensitive platinum nanoparticles-embedded porous graphene sensor for monitoring ROS from living cells upon oxidative stress. Sensors Actuators B Chem 263:543–549CrossRefGoogle Scholar
  14. 14.
    Liu M, Liu R, Chen W (2013) Biosensors and bioelectronics graphene wrapped cu 2 O nanocubes : non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212CrossRefGoogle Scholar
  15. 15.
    Liu A-L, Hong L, Deng H-H et al (2012) Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 13:1199–1204CrossRefGoogle Scholar
  16. 16.
    Cheng TM, Huang TK, Lin HK, Tung SP, Chen YL, Lee CY, Chiu HT (2010) (110)-exposed gold nanocoral electrode as low onset potential selective glucose sensor. ACS Appl Mater Interfaces 2:2773–2780CrossRefGoogle Scholar
  17. 17.
    Noh HB, Lee KS, Chandra P, Won MS, Shim YB (2012) Application of a cu-co alloy dendrite on glucose and hydrogen peroxide sensors. Electrochim Acta 61:36–43CrossRefGoogle Scholar
  18. 18.
    Xu X, Jia J, Yang X, Dong S (2010) A templateless, surfactantless, simple electrochemical route to a dendritic gold nanostructure and its application to oxygen reduction. Langmuir 26:7627–7631Google Scholar
  19. 19.
    Ye W, Yan J, Ye Q, Zhou F (2010) Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures : growth and their multiple applications. J Phys Chem 114:15617–15624Google Scholar
  20. 20.
    Naveen MH, Gurudatt NG, Noh HB, Shim YB (2016) Dealloyed AuNi dendrite anchored on a functionalized conducting polymer for improved catalytic oxygen reduction and hydrogen peroxide sensing in living cells. Adv Funct Mater 26:1590–1601CrossRefGoogle Scholar
  21. 21.
    Verma S, Singh A, Shukla A, Kaswan J, Arora K, Ramirez-Vick J, Singh P, Singh SP (2017) Anti-IL8/AuNPs-rGO/ITO as an Immunosensing platform for noninvasive electrochemical detection of Oral Cancer. ACS Appl Mater Interfaces 9:27462–27474CrossRefGoogle Scholar
  22. 22.
    Chandra P, Noh H, Won M, Shim Y (2011) Biosensors and bioelectronics detection of daunomycin using phosphatidylserine and aptamer co-immobilized on au nanoparticles deposited conducting polymer. Biosens Bioelectron 26:4442–4449CrossRefGoogle Scholar
  23. 23.
    Pallela R, Chandra P, Noh H, Shim Y (2016) Biosensors and bioelectronics an amperometric nanobiosensor using a biocompatible conjugate for early detection of metastatic cancer cells in biological fl uid. Biosens Bioelectron 85:883–890CrossRefGoogle Scholar
  24. 24.
    Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications. Wiley New YorkGoogle Scholar
  25. 25.
    Li J, Jiang J, Xu Z, Liu M, Tang S, Yang C, Qian D (2018) Facile synthesis of ag@ Cu2O heterogeneous nanocrystals decorated N-doped reduced graphene oxide with enhanced electrocatalytic activity for ultrasensitive detection of H2O2. Sensors Actuators B Chem 260:529–540CrossRefGoogle Scholar
  26. 26.
    Bai H, Zhang L, Shen H, Liu L (2017) Facile synthesis of cuprous oxide/gold nanocomposites for nonenzymatic amperometric sensing of hydrogen peroxide. Electroanalysis 29:2773–2779CrossRefGoogle Scholar
  27. 27.
    Liu Y, Wang L, Yang L, Zhan Y, Zou L, Ye B (2017) Nonenzymatic H2O2 electrochemical sensor based on SnO2-NPs coated Polyethylenimine functionalized graphene. Electroanalysis 29:2044–2052CrossRefGoogle Scholar
  28. 28.
    Su S, Han X, Lu Z, Liu W, Zhu D, Chao J, Fan C, Wang L, Song S, Weng L, Wang L (2017) Facile synthesis of a MoS2--Prussian blue nanocube nanohybrid-based electrochemical sensing platform for hydrogen peroxide and carcinoembryonic antigen detection. ACS Appl Mater Interfaces 9:12773–12781CrossRefGoogle Scholar
  29. 29.
    Shu Y, Li B, Xu Q, Gu P, Xiao X, Liu F, Yu L, Pang H, Hu X (2017) Cube-like CoSn (OH) 6 nanostructure for sensitive electrochemical detection of H2O2 in human serum sample. Sensors Actuators B Chem 241:528–533CrossRefGoogle Scholar
  30. 30.
    Tian L, Xia K, Hu W, Zhong X, Chen Y, Yang C, He G, Su Y, Li L (2017) A wide linear range and stable H2O2 electrochemical sensor based on ag decorated hierarchical Sn3O4. Electrochim Acta 231:190–199CrossRefGoogle Scholar
  31. 31.
    Wu Z-L, Li C-K, Yu J-G, Chen X-Q (2017) MnO2/reduced graphene oxide nanoribbons: facile hydrothermal preparation and their application in amperometric detection of hydrogen peroxide. Sensors Actuators B Chem 239:544–552CrossRefGoogle Scholar
  32. 32.
    Shabnam L, Faisal SN, Roy AK, Minett AI, Gomes VG (2017) Nonenzymatic multispecies sensor based on cu-Ni nanoparticle dispersion on doped graphene. Electrochim Acta 224:295–305CrossRefGoogle Scholar
  33. 33.
    Sivakumar M, Veeramani V, Chen SM et al (2019) Porous carbon-NiO nanocomposites for amperometric detection of hydrazine and hydrogen peroxide. Microchim Acta 186:2–9CrossRefGoogle Scholar
  34. 34.
    Chandra P (2016) Nanobiosensors for personalized and onsite biomedical diagnosis, the Institution of Engineering and Technology. House, Michael FaradayGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Buddhadev Purohit
    • 1
  • Kuldeep Mahato
    • 1
  • Ashutosh Kumar
    • 1
  • Pranjal Chandra
    • 1
    Email author
  1. 1.Laboratory of Bio-Physio Sensors and Nano-bioengineering, Department of Bioscience and BioengineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations