Advertisement

Microchimica Acta

, 186:682 | Cite as

Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review

  • Hani Nasser AbdelhamidEmail author
Review Article
  • 5 Downloads

Abstract

Great endeavors are undertaken to find effective nanoparticles to replace organic matrices for the analysis of small molecules using laser desorption ionization mass spectrometry (LDI-MS). Nanoparticles offer high sensitivity and better selectivity compared to conventional organic matrices. Surface assisted LDI-MS (SALDI-MS), and surface enhanced LDI-MS (SELDI-MS) provide clear background spectra without observable interferences peaks, and cause no fragmentation (soft ionization) of thermal and acidity labile molecules. This review article (with 460 references) summarizes the recent applications of nanoparticles including metallic, metal oxides, silicon, quantum dots, metal-organic frameworks and covalent organic frameworks, for the analysis of small molecules. Nanoparticles serve not only as surface for LDI-MS, but they can be also used as probe or pseudo-stationary phase for separation, enrichment, and microextraction. Hopefully, the knowledge and learning points gained from this review will deepen the understanding of nanoparticles applications for LDI-MS.

Graphical Abstract

Schematic representation of laser desorption ionization mass spectrometry using various nanoparticles (such as metallic nanoparticles, carbon nanomaterials, silicon based nanomaterials, metal oxides, quantum dots, metal-organic frameworks, and covalent organic frameworks). Advanced technologies using nanoparticles are also reviewed.

Keywords

MOF Nanoparticles Small molecules Matrix assisted laser desorption ionization mass spectrometry SALDI-MS SELDI-MS Metal-organic frameworks 

Abbreviations

ALD

Atomic layer deposition

BSA

Bovine serum albumin

Au NPET

cationic gold nanoparticle enhanced target

CLs

Cardiolipins

CPC

Cetyl pyridinium chloride monohydrate

CTAB

cetyltrimethyl ammonium chloride

CV

coefficient of variation

DIOS

Desorption ionization on silicon

DIOM

desorption ionization on mesoporous silicate

DDAB

didodecyldimethyl ammonium bromide

ESI-MS

Electrospray ionization mass spectrometry

GSH

glutathione

GALDI-MS

Graphite assisted LDI-MS

MILs

Materials Institute Lavoisier

MALDI-MS

Matrix assisted laser desorption ionization mass spectrometry

ME-NIMS

matrix-enhanced nanostructure initiator mass spectrometry

MELDI

material enhanced laser desorption ionization

IMAC

Metal affinity chromatography

nano-PALDI

nanoparticle assisted LDI

NIMS

nanostructure initiator mass spectrometry

NALDI

nanostructure-assisted laser desorption/ionization

TOAB

tetraoctylammonium bromide

TMAOH

tetramethyl ammonium hydroxide pentahydrate

4-MPBA

mercaptophenylboronic acid

NALDI-MS

nanowire assisted LDI-MS

NSAIDs

non-steroidal anti-inflammatory drugs

PEG 200

polyethylene glycol

PCs

4- phosphatidylcholines

Pes

phosphatidylethanolamines

PIs

phosphatidylinositols

PGs

phosphatidylglycerols

QA

Quaternary ammonium

SPALDI

silicon nanoparticle assisted laser desorption ionization

SDS

sodium dodecyl sulfate

SALDI-MS

surface assisted laser desorption ionization mass spectrometry

SELDI-MS

surface enhanced LDI-MS

TAGs

triacylglycerols

UiO-66

University of Oslo

Notes

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Zenobi R, Knochenmuss R (1998) Ion formation in MALDI mass spectrometry. Mass Spectrom Rev 17:337–366.  https://doi.org/10.1002/(sici)1098-2787(1998)17:5<337::aid-mas2>3.0.co;2-s CrossRefGoogle Scholar
  2. 2.
    Wu KJ, Odom RW (1998) Characterizing synthetic polymers by MALDI MS. Anal Chem 70:456A–461A.  https://doi.org/10.1021/ac981910q CrossRefPubMedGoogle Scholar
  3. 3.
    Fenselau C (1997) MALDI MS and strategies for protein analysis. Anal Chem 69:661A–665A.  https://doi.org/10.1021/ac971831z CrossRefPubMedGoogle Scholar
  4. 4.
    Karas M, Bahr U, Gießmann U (1991) Matrix-assisted laser desorption ionization mass spectrometry. Mass Spectrom Rev 10:335–357.  https://doi.org/10.1002/mas.1280100503 CrossRefGoogle Scholar
  5. 5.
    Chen Y-C, Abdelhamid HN, Wu H-F (2017) Simple and direct quantitative analysis for quinidine drug in fish tissues. Mass Spectrom Lett 8:8–13.  https://doi.org/10.5478/msl.2017.8.1.8 CrossRefGoogle Scholar
  6. 6.
    Sekar R, Kailasa SK, Abdelhamid HN et al (2013) Electrospray ionization tandem mass spectrometric studies of copper and iron complexes with tobramycin. Int J Mass Spectrom 338:23–29.  https://doi.org/10.1016/j.ijms.2012.12.001 CrossRefGoogle Scholar
  7. 7.
    Khan N, Abdelhamid HN, Yan J-Y, et al (2015) Detection of flutamide in pharmaceutical dosage using higher electrospray ionization mass spectrometry (ESI-MS) tandem mass coupled with Soxhlet apparatus. Anal Chem Res 3:  https://doi.org/10.1016/j.ancr.2015.01.001 CrossRefGoogle Scholar
  8. 8.
    Abdelhamid HN, Wu H (2015) Soft ionization of metallo-mefenamic using electrospray ionization mass spectrometry. Mass Spectrom Lett 6:43–47.  https://doi.org/10.5478/MSL.2015.6.2.43 CrossRefGoogle Scholar
  9. 9.
    Hofstadler SA, Sannes-Lowery KA (2006) Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nat Rev Drug Discov 5:585–595.  https://doi.org/10.1038/nrd2083 CrossRefPubMedGoogle Scholar
  10. 10.
    Abdelhamid HN (2016) Ionic liquids for mass spectrometry: Matrices, separation and microextraction. TrAC Trends Anal Chem 77:122–138CrossRefGoogle Scholar
  11. 11.
    Abdelhamid HN (2017) Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. TrAC Trends Anal Chem 89:68–98.  https://doi.org/10.1016/j.trac.2017.01.012 CrossRefGoogle Scholar
  12. 12.
    H. N. Abdelhamid (2013) Applications of Nanomaterials and Organic Semiconductors for Bacteria &Biomolecules analysis/ biosensing using Laser Analytical Spectroscopy. M.Sc. Thesis, National Sun-Yat Sen UniversityGoogle Scholar
  13. 13.
    Abdelhamid HN (2015) Ionic liquids matrices for laser assisted desorption/Ionization mass spectrometry. Mass Spectrom Purif Tech 01:109–119.  https://doi.org/10.4172/2469-9861.1000109
  14. 14.
    Abdelhamid HN, Gopal J, Wu HF (2013) Synthesis and application of ionic liquid matrices (ILMs) for effective pathogenic bacteria analysis in matrix assisted laser desorption/ionization (MALDI-MS). Anal Chim Acta 767:104–111CrossRefGoogle Scholar
  15. 15.
    Abdelhamid HN, Khan MS, Wu H-F (2014) Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: a novel strategy for pathogenic bacteria biosensing. Anal Chim Acta 823:51–60.  https://doi.org/10.1016/j.aca.2014.03.026 CrossRefPubMedGoogle Scholar
  16. 16.
    Abdelhamid HN (2016) Physicochemical properties of proteomic ionic liquids matrices for MALDI-MS. J Data Min Genomics Proteomics 7:2153–0602.1000.  https://doi.org/10.4172/2153-0602.1000189
  17. 17.
    He X, Chen Q, Zhang Y, Lin JM (2014) Recent advances in microchip-mass spectrometry for biological analysis. TrAC Trends Anal Chem 53:84–97CrossRefGoogle Scholar
  18. 18.
    Abdelhamid HN, Wu H-F (2014) Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. TrAC Trends Anal Chem 65:30–46CrossRefGoogle Scholar
  19. 19.
    Kumaran S, Abdelhamid HN, Wu H-F (2017) Quantification analysis of protein and mycelium contents upon inhibition of melanin for: Aspergillus Niger: A study of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). RSC Adv 7:30289–30294.  https://doi.org/10.1039/c7ra03741d CrossRefGoogle Scholar
  20. 20.
    He Z, Chen Q, Chen F et al (2016) Multiplexed glycan pro fi ling using MALDI-TOF mass spectrometry. Chem Sci 7:5448–5452.  https://doi.org/10.1039/C6SC00215C CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang Y, Li H, Ma Y, Lin J (2014) Lipid profiling of mammalian cells with in situ matrix-assisted laser desorption ionization-mass spectrometry. Sci China Chem 57:442–446.  https://doi.org/10.1007/s11426-013-4960-3 CrossRefGoogle Scholar
  22. 22.
    Santos IC, Hildenbrand ZL, Schug KA (2016) Applications of MALDI-TOF MS in environmental microbiology. Analyst 141:2827–2837.  https://doi.org/10.1039/C6AN00131A CrossRefPubMedGoogle Scholar
  23. 23.
    Law KP, Larkin JR (2011) Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal Bioanal Chem 399:2597–2622.  https://doi.org/10.1007/s00216-010-4063-3 CrossRefPubMedGoogle Scholar
  24. 24.
    Calvano CD, Monopoli A, Cataldi TRI, Palmisano F (2018) MALDI matrices for low molecular weight compounds: an endless story? Anal Bioanal Chem 410:4015–4038.  https://doi.org/10.1007/s00216-018-1014-x CrossRefPubMedGoogle Scholar
  25. 25.
    Abdelhamid HN (2015) Ionic liquids for mass spectrometry: matrices, separation and microextraction. TrAC Trends Anal Chem.  https://doi.org/10.1016/j.trac.2015.12.007 CrossRefGoogle Scholar
  26. 26.
    Abdelhamid HN (2015) Ionic Liquids Matrices for Laser Assisted Desorption/Ionization MassSpectrometry Mass Spectrom Purif Tech 2015:  https://doi.org/10.4172/2469-9861.1000109
  27. 27.
    Abdelhamid HN (2016) Physicochemical Properties of Proteomic Ionic Liquids Matrices for MALDI-MS. J Data Mining Genomics Proteomics 07:1–6.  https://doi.org/10.4172/2153-0602.1000189 CrossRefGoogle Scholar
  28. 28.
    Abdelhamid HN (2018) Ionic liquid-assisted laser desorption/ionization–mass spectrometry: matrices, microextraction, and separation. Methods Protoc 1:23.  https://doi.org/10.3390/mps1020023 CrossRefGoogle Scholar
  29. 29.
    Dowaidar M, Abdelhamid HN, Hällbrink M et al (2017) Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery. BBA-GEN SUBJECTS 1861: 2334–2341.  https://doi.org/10.1016/j.bbagen.2017.07.002 CrossRefGoogle Scholar
  30. 30.
    Abdelhamid HN (2015) Delafossite Nanoparticle as New Functional Materials: Advances in Energy, Nanomedicine and Environmental Applications. Mater Sci Forum 832:28–53.  https://doi.org/10.4028/www.scientific.net/MSF.832.28 CrossRefGoogle Scholar
  31. 31.
    Etman AS, Abdelhamid HN, Yuan Y et al (2018) Facile Water-Based Strategy for Synthesizing MoO3– x Nanosheets: Efficient Visible Light Photocatalysts for Dye Degradation. ACS Omega 3:2193–2201.  https://doi.org/10.1021/acsomega.8b00012 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dowaidar M, Abdelhamid HN, Hällbrink M et al (2017) Magnetic Nanoparticle Assisted Self-assembly of Cell Penetrating Peptides-Oligonucleotides Complexes for Gene Delivery. Sci Rep 7:9159.  https://doi.org/10.1038/s41598-017-09803-z CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Abdelhamid HN, Zou X (2018) Template-free and room temperature synthesis of hierarchical porous zeolitic imidazolate framework nanoparticles and their dye and CO 2 sorption. Green Chem 20:1074–1084.  https://doi.org/10.1039/C7GC03805D CrossRefGoogle Scholar
  34. 34.
    Abdelhamid HN, Kumaran S, Wu H-F (2016) One-pot synthesis of CuFeO2 nanoparticles capped with glycerol and proteomic analysis of their nanocytotoxicity against fungi. RSC Adv 6:97629–97635.  https://doi.org/10.1039/C6RA13396G CrossRefGoogle Scholar
  35. 35.
    Iqbal MN, Abdel-Magied AF, Abdelhamid HN et al (2017) Mesoporous Ruthenium Oxide: A Heterogeneous Catalyst for Water Oxidation. ACS Sustain Chem Eng 5:9651–9656.  https://doi.org/10.1021/acssuschemeng.7b02845 CrossRefGoogle Scholar
  36. 36.
    Dowaidar M, Nasser Abdelhamid H, Hällbrink M et al (2018) Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles–cell-penetrating peptide. J Biomater Appl 33:392–401.  https://doi.org/10.1177/0885328218796623 CrossRefPubMedGoogle Scholar
  37. 37.
    Abdelhamid HN, Wu H-F (2019) Nanoparticles Advanced Drug Delivery for Cancer Cells. In: Keservani RK, Sharma AK (eds) Nanoparticulate Drug Delivery Systems. pp 121–144Google Scholar
  38. 38.
    Keservani RK, Sharma AK (2019) Nanoparticulate Drug Delivery Systems. Apple Academic PressGoogle Scholar
  39. 39.
    Abdelhamid HN, Wu H-F (2019) Nanoparticles Advance Drug Delivery for Cancer Cells. In: Keservani RK, Sharma AK (eds) Nanoparticulate Drug Delivery Systems. Apple Academic Press, USA, pp 121–150CrossRefGoogle Scholar
  40. 40.
    Abdelhamid HN (2019) Nanoparticles Assisted Laser Desorption/Ionization Mass Spectrometry. In: Handbook of Smart Materials in Analytical Chemistry. John Wiley & Sons, Ltd, Chichester, pp 729–755CrossRefGoogle Scholar
  41. 41.
    Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization TOF-MS. Rapid Commun Mass Spectrom 2:151CrossRefGoogle Scholar
  42. 42.
    Shi CY, Deng CH (2016) Recent advances in inorganic materials for LDI-MS analysis of small molecules. Analyst 141:2816–2826.  https://doi.org/10.1039/C6AN00220J CrossRefPubMedGoogle Scholar
  43. 43.
    Kuzema PA (2011) Small-molecule analysis by surface-assisted laser desorption/ionization mass spectrometry. J Anal Chem 66:1227–1242.  https://doi.org/10.1134/S1061934811130065 CrossRefGoogle Scholar
  44. 44.
    Zhu Z-J, Rotello VM, Vachet RW (2009) Engineered nanoparticle surfaces for improved mass spectrometric analyses. Analyst 134:2183–2188.  https://doi.org/10.1039/b910428c CrossRefPubMedGoogle Scholar
  45. 45.
    Arakawa R, Kawasaki H (2010) Functionalized Nanoparticles and Nanostructured Surfaces for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Sci 26:1229–1240.  https://doi.org/10.2116/analsci.26.1229 CrossRefPubMedGoogle Scholar
  46. 46.
    Lu M, Yang X, Yang Y et al (2017) Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules. Nanomaterials 7:87.  https://doi.org/10.3390/nano7040087 CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kawasaki H, Akira T, Watanabe T et al (2009) Sulfonate group-modified FePtCu nanoparticles as a selective probe for LDI-MS analysis of oligopeptides from a peptide mixture and human serum proteins. Anal Bioanal Chem 395:1423–1431.  https://doi.org/10.1007/s00216-009-3122-0 CrossRefPubMedGoogle Scholar
  48. 48.
    Castellana ET, Russell DH (2007) Tailoring nanoparticle surface chemistry to enhance laser desorption ionization of peptides and proteins. Nano Lett 7:3023–3025.  https://doi.org/10.1021/nl071469w CrossRefPubMedGoogle Scholar
  49. 49.
    Huang YF, Chang HT (2007) Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal Chem 79:4852–4859.  https://doi.org/10.1021/ac070023x CrossRefPubMedGoogle Scholar
  50. 50.
    Su CL, Tseng WL (2007) Gold nanoparticles as assisted matrix for determining neutral small carbohydrates through laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 79:1626–1633.  https://doi.org/10.1021/ac061747w CrossRefPubMedGoogle Scholar
  51. 51.
    McLean JA, Stumpo KA, Russel DH (2005) Size-selected (2-10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J Am Chem Soc 127:5304–5305.  https://doi.org/10.1021/ja043907w CrossRefPubMedGoogle Scholar
  52. 52.
    Pilolli R, Palmisano F, Cioffi N (2012) Gold nanomaterials as a new tool for bioanalytical applications of laser desorption ionization mass spectrometry. Anal Bioanal Chem 402:601–623CrossRefGoogle Scholar
  53. 53.
    Silina YE, Fink-straube C, Hayen H, Volmer DA (2015) Analysis of fatty acids and triacylglycerides by Pd nanoparticle-assisted laser desorption/ionization mass spectrometry. Anal Methods 7:3701–3707.  https://doi.org/10.1039/C5AY00705D CrossRefGoogle Scholar
  54. 54.
    Kawasaki H, Yonezawa T, Watanabe T, Arakawa R (2007) Platinum nanoflowers for surface-assisted laser desorption/ionization mass spectrometry of biomolecules. J Phys Chem C 111:16278–16283.  https://doi.org/10.1021/jp075159d CrossRefGoogle Scholar
  55. 55.
    Nayak R, Knapp DR (2007) Effects of Thin-Film Structural Parameters on Laser Desorption/Ionization from Porous Alumina. Anal Chem 79:4950–4956.  https://doi.org/10.1021/ac062289u CrossRefPubMedGoogle Scholar
  56. 56.
    Niklew M-L, Hochkirch U, Melikyan A et al (2010) Phosphopeptide Screening Using Nanocrystalline Titanium Dioxide Films as Affinity Matrix-Assisted Laser Desorption Ionization Targets in Mass Spectrometry. Anal Chem 82:1047–1053.  https://doi.org/10.1021/ac902403m CrossRefPubMedGoogle Scholar
  57. 57.
    Lee KH, Chiang CK, Lin ZH, Chang HT (2007) Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices. Rapid Commun Mass Spectrom 21:2023–2030.  https://doi.org/10.1002/rcm.3058 CrossRefPubMedGoogle Scholar
  58. 58.
    Taira S, Kitajima K, Katayanagi H et al (2009) Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications. Sci Technol Adv Mater 10:034602.  https://doi.org/10.1088/1468-6996/10/3/034602 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kang M-J, Pyun J-C, Lee J-C et al (2005) Nanowire-assisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules. Rapid Commun Mass Spectrom 19:3166–3170.  https://doi.org/10.1002/rcm.2187 CrossRefGoogle Scholar
  60. 60.
    Kailasa SK, Wu HF (2010) Multifunctional ZrO2 nanoparticles and ZrO2-SiO 2 nanorods for improved MALDI-MS analysis of cyclodextrins, peptides, and phosphoproteins. Anal Bioanal Chem 396:1115–1125.  https://doi.org/10.1007/s00216-009-3330-7 CrossRefPubMedGoogle Scholar
  61. 61.
    Chen W-Y, Chen Y-C (2006) Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins. Anal Bioanal Chem 386:699–704.  https://doi.org/10.1007/s00216-006-0427-0 CrossRefPubMedGoogle Scholar
  62. 62.
    Chen CT, Chen YC (2005) Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 77:5912–5919.  https://doi.org/10.1021/ac050831t CrossRefPubMedGoogle Scholar
  63. 63.
    Gholipour Y, Giudicessi SL, Nonami H, Erra-Balsells R (2010) Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues. Anal Chem 82:5518–5526.  https://doi.org/10.1021/ac1003129 CrossRefPubMedGoogle Scholar
  64. 64.
    Finkel NH, Prevo BG, Velev OD, He L (2005) Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry. Anal Chem 77:1088–1095.  https://doi.org/10.1021/ac048645v CrossRefPubMedGoogle Scholar
  65. 65.
    Dupré M, Coffinier Y, Boukherroub R et al (2012) Laser desorption ionization mass spectrometry of protein tryptic digests on nanostructured silicon plates. J Proteome 75:1973–1990.  https://doi.org/10.1016/j.jprot.2011.12.039 CrossRefGoogle Scholar
  66. 66.
    Piret G, Drobecq H, Coffinier Y et al (2010) Matrix-free laser desorption/ionization mass spectrometry on silicon nanowire arrays prepared by chemical etching of crystalline silicon. Langmuir 26:1354–1361.  https://doi.org/10.1021/la902266x CrossRefPubMedGoogle Scholar
  67. 67.
    Chen Y, Vertes A (2006) Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays. Anal Chem 78:5835–5844.  https://doi.org/10.1021/ac060405n CrossRefPubMedGoogle Scholar
  68. 68.
    Go EP, Apon JV, Luo G et al (2005) Desorption/ionization on silicon nanowires. Anal Chem 77:1641–1646.  https://doi.org/10.1021/ac048460o CrossRefPubMedGoogle Scholar
  69. 69.
    Shariatgorji M, Amini N, Ilag LL (2009) Silicon nitride nanoparticles for surface-assisted laser desorption/ionization of small molecules. J Nanopart Res 11:1509–1512.  https://doi.org/10.1007/s11051-009-9601-6 CrossRefGoogle Scholar
  70. 70.
    Seino T, Sato H, Yamamoto A et al (2007) Matrix-free laser desorption/ionization-mass spectrometry using self-assembled germanium nanodots. Anal Chem 79:4827–4832.  https://doi.org/10.1021/ac062216a CrossRefPubMedGoogle Scholar
  71. 71.
    Chiang CK, Yang Z, Lin YW et al (2010) Detection of proteins and protein-ligand complexes using hgte nanostructure matrixes in surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 82:4543–4550.  https://doi.org/10.1021/ac100550c CrossRefPubMedGoogle Scholar
  72. 72.
    Kailasa SK, Kiran K, Wu HF (2008) Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 80:9681–9688.  https://doi.org/10.1021/ac8015664 CrossRefPubMedGoogle Scholar
  73. 73.
    Yonezawa T, Tsukamoto H, Hayashi S et al (2013) Suitability of GaP nanoparticles as a surface-assisted laser desorption/ionization mass spectroscopy inorganic matrix and their soft ionization ability. Analyst 138:995–999.  https://doi.org/10.1039/c2an36738f CrossRefPubMedGoogle Scholar
  74. 74.
    Najam-ul-Haq M, Rainer M, Huck CW et al (2008) Nanostructured Diamond-Like Carbon on Digital Versatile Disc as a Matrix-Free Target for Laser Desorption/Ionization Mass Spectrometry. Anal Chem 80:7467–7472.  https://doi.org/10.1021/ac801190e CrossRefPubMedGoogle Scholar
  75. 75.
    Coffinier Y, Szunerits S, Drobecq H et al (2012) Diamond nanowires for highly sensitive matrix-free mass spectrometry analysis of small molecules. Nanoscale 4:231–238.  https://doi.org/10.1039/C1NR11274K CrossRefPubMedGoogle Scholar
  76. 76.
    Xu S, Li Y, Zou H et al (2003) Carbon Nanotubes as Assisted Matrix for Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal Chem 75:6191–6195.  https://doi.org/10.1021/ac0345695 CrossRefPubMedGoogle Scholar
  77. 77.
    Hu L, Xu S, Pan C et al (2005) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a matrix of carbon nanotubes for the analysis of low-mass compounds in environmental samples. Environ Sci Technol 39:8442–8447.  https://doi.org/10.1021/es0508572 CrossRefPubMedGoogle Scholar
  78. 78.
    Nasser Abdelhamid H, Wu B-S, Wu H-F (2014) Graphene coated silica applied for high ionization matrix assisted laser desorption/ionization mass spectrometry: A novel approach for environmental and biomolecule analysis. Talanta 126:27–37.  https://doi.org/10.1016/j.talanta.2014.03.016 CrossRefPubMedGoogle Scholar
  79. 79.
    Silina YE, Volmer DA (2013) Nanostructured solid substrates for efficient laser desorption/ionization mass spectrometry (LDI-MS) of low molecular weight compounds. Analyst 138:7053.  https://doi.org/10.1039/c3an01120h CrossRefPubMedGoogle Scholar
  80. 80.
    Cha S, Yeung ES (2007) Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal Chem 79:2373–2385.  https://doi.org/10.1021/ac062251h CrossRefPubMedGoogle Scholar
  81. 81.
    Taira S, Sugiura Y, Moritake S et al (2008) Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem 80:4761–4766.  https://doi.org/10.1021/ac800081z CrossRefPubMedGoogle Scholar
  82. 82.
    Wyatt MF, Ding S, Stein BK et al (2010) Analysis of various organic and organometallic compounds using nanostructure-assisted laser desorption/ionization time-of-flight mass spectrometry (NALDI-TOFMS). J Am Soc Mass Spectrom 21:1256–1259.  https://doi.org/10.1016/j.jasms.2010.03.038 CrossRefPubMedGoogle Scholar
  83. 83.
    Moening TN, Brown VL, He L et al (2016) Matrix-enhanced nanostructure initiator mass spectrometry (ME-NIMS) for small molecule detection and imaging. Anal Methods 8:8234–8240.  https://doi.org/10.1039/C6AY02753A CrossRefGoogle Scholar
  84. 84.
    Wei J, Buriak JM, Siuzdak G (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399:243–246.  https://doi.org/10.1038/20400 CrossRefPubMedGoogle Scholar
  85. 85.
    Northen TR, Yanes O, Northen MT et al (2007) Clathrate nanostructures for mass spectrometry. Nature 449:1033–1036.  https://doi.org/10.1038/nature06195 CrossRefPubMedGoogle Scholar
  86. 86.
    Feuerstein I, Najam-ul-Haq M, Rainer M et al (2006) Material-Enhanced Laser Desorption/Ionization (MELDI)-A New Protein Profiling Tool Utilizing Specific Carrier Materials for Time of Flight Mass Spectrometric Analysis. J Am Soc Mass Spectrom 17:1203–1208.  https://doi.org/10.1016/j.jasms.2006.04.032 CrossRefPubMedGoogle Scholar
  87. 87.
    Wen X, Dagan S, Wysocki VH (2007) Small-Molecule Analysis with Silicon-Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 79:434–444.  https://doi.org/10.1021/ac061154l CrossRefPubMedGoogle Scholar
  88. 88.
    Lee CS, Kang KK, Kim JH et al (2007) Analysis of small molecules by desorption/ionization on mesoporous silicate (DIOM)-mass spectrometry (MS). Microporous Mesoporous Mater 98:200–207.  https://doi.org/10.1016/j.micromeso.2006.09.005 CrossRefGoogle Scholar
  89. 89.
    Sekuła J, Nizioł J, Rode W, Ruman T (2015) Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds. Anal Chim Acta 875:61–72.  https://doi.org/10.1016/j.aca.2015.01.046 CrossRefPubMedGoogle Scholar
  90. 90.
    Bergman N, Shevchenko D, Bergquist J (2014) Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry. Anal Bioanal Chem 406:49–61.  https://doi.org/10.1007/s00216-013-7471-3 CrossRefPubMedGoogle Scholar
  91. 91.
    Muthu M, Gopal J, Chun S (2017) Nanopost array laser desorption ionization mass spectrometry (NAPA-LDI MS): Gathering moss? TrAC Trends Anal Chem 97:96–103.  https://doi.org/10.1016/j.trac.2017.08.016 CrossRefGoogle Scholar
  92. 92.
    Abdelhamid HN (2018) Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Microchim Acta 185:200.  https://doi.org/10.1007/s00604-018-2687-8 CrossRefGoogle Scholar
  93. 93.
    Qiao L, Liu B, Girault HH (2010) Nanomaterial-assisted laser desorption ionization for mass spectrometry-based biomedical analysis. Nanomedicine (London) 5:1641–1652.  https://doi.org/10.2217/nnm.10.127 CrossRefGoogle Scholar
  94. 94.
    Kailasa SK, Wu H-F (2010) Surface modified silver selinide nanoparticles as extracting probes to improve peptide/protein detection via nanoparticles-based liquid phase microextraction coupled with MALDI mass spectrometry. Talanta 83:527–534.  https://doi.org/10.1016/j.talanta.2010.09.040 CrossRefPubMedGoogle Scholar
  95. 95.
    Kailasa SK, Wu HF (2015) Nanomaterial-based miniaturized extraction and preconcentration techniques coupled to matrix-assisted laser desorption/ionization mass spectrometry for assaying biomolecules. TrAC Trends Anal Chem 65:54–72CrossRefGoogle Scholar
  96. 96.
    Kailasa SK, Wu H-F (2014) Recent developments in nanoparticle-based MALDI mass spectrometric analysis of phosphoproteomes. Microchim Acta 181:853–864.  https://doi.org/10.1007/s00604-014-1191-z CrossRefGoogle Scholar
  97. 97.
    Kailasa SK, Mehta VN, Wu H-F (2014) Recent developments of liquid-phase microextraction techniques directly combined with ESI- and MALDI-mass spectrometric techniques for organic and biomolecule assays. RSC Adv 4:16188–16205.  https://doi.org/10.1039/c3ra47347c CrossRefGoogle Scholar
  98. 98.
    Guinan T, Kirkbride P, Pigou PE et al (2015) Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics. Mass Spectrom Rev 34:627–640CrossRefGoogle Scholar
  99. 99.
    Huang YF, Chang HT (2006) Nile red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 78:1485–1493.  https://doi.org/10.1021/ac0517646 CrossRefPubMedGoogle Scholar
  100. 100.
    Svatoš A (2010) Mass spectrometric imaging of small molecules. Trends Biotechnol 28:425–434CrossRefGoogle Scholar
  101. 101.
    Walton BL, Verbeck GF (2014) Soft-landing ion mobility of silver clusters for small-molecule matrix-assisted laser desorption ionization mass spectrometry and imaging of latent fingerprints. Anal Chem 86:8114–8120.  https://doi.org/10.1021/ac5010822 CrossRefPubMedGoogle Scholar
  102. 102.
    Chiang N-C, Chiang C-K, Lin Z-H et al (2009) Detection of aminothiols through surface-assisted laser desorption/ionization mass spectrometry using mixed gold nanoparticles. Rapid Commun Mass Spectrom 23:3063–3068.  https://doi.org/10.1002/rcm.4221 CrossRefPubMedGoogle Scholar
  103. 103.
    Anna Picca R, Damiana Calvano C, Cioffi N, Palmisano F (2017) Mechanisms of Nanophase-Induced Desorption in LDI-MS. A Short Review Nanomaterials 7:75.  https://doi.org/10.3390/nano7040075 CrossRefGoogle Scholar
  104. 104.
    Chiang C-K, Chen W-T, Chang H-T (2011) Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev 40:1269–1281.  https://doi.org/10.1039/C0CS00050G CrossRefGoogle Scholar
  105. 105.
    Xu L, Qi X, Li X et al (2016) Recent advances in applications of nanomaterials for sample preparation. Talanta 146:714–726CrossRefGoogle Scholar
  106. 106.
    Wan D, Gao M, Wang Y et al (2013) A rapid and simple separation and direct detection of glutathione by gold nanoparticles and graphene-based MALDI-TOF-MS. J Sep Sci 36:629–635.  https://doi.org/10.1002/jssc.201200766 CrossRefPubMedGoogle Scholar
  107. 107.
    Li W, Khan M, Li H et al (2019) Homogenous deposition of matrix–analyte cocrystals on gold-nanobowl arrays for improving MALDI-MS signal reproducibility. Chem Commun 55:2166–2169.  https://doi.org/10.1039/C8CC09945F CrossRefGoogle Scholar
  108. 108.
    Pan X-Y, Chen C-H, Chang Y-H et al (2019) Osteoporosis risk assessment using multilayered gold-nanoparticle thin film via SALDI-MS measurement. Anal Bioanal Chem 411:2793–2802.  https://doi.org/10.1007/s00216-019-01759-5 CrossRefPubMedGoogle Scholar
  109. 109.
    Yao G, Zhang H, Deng C et al (2009) Facile synthesis of 4-mercaptophenylboronic acid functionalized gold nanoparticles for selective enrichment of glycopeptides. Rapid Commun Mass Spectrom 23:3493–3500.  https://doi.org/10.1002/rcm.4258 CrossRefPubMedGoogle Scholar
  110. 110.
    Yang M, Fujino T (2014) Gold nanoparticles loaded on zeolite as inorganic matrix for laser desorption/ionization mass spectrometry of small molecules. Chem Phys Lett 592:160–163.  https://doi.org/10.1016/j.cplett.2013.12.027 CrossRefGoogle Scholar
  111. 111.
    Marsico ALM, Creran B, Duncan B et al (2015) Inkjet-Printed Gold Nanoparticle Surfaces for the Detection of Low Molecular Weight Biomolecules by Laser Desorption/Ionization Mass Spectrometry. J Am Soc Mass Spectrom 26:1931–1937.  https://doi.org/10.1007/s13361-015-1223-x CrossRefPubMedGoogle Scholar
  112. 112.
    Huang S, Chen G, Ou R et al (2018) Ultrathin Self-Assembled Diphenylalanine Nanosheets through a Gold-Stabilized Strategy for High-Efficiency Adsorption/Desorption/Ionization. Anal Chem 90:8607–8615.  https://doi.org/10.1021/acs.analchem.8b01855 CrossRefPubMedGoogle Scholar
  113. 113.
    Tsao CW, Yang ZJ (2015) High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis. ACS Appl Mater Interfaces 7:22630–22637.  https://doi.org/10.1021/acsami.5b07395 CrossRefPubMedGoogle Scholar
  114. 114.
    Hayasaka T, Goto-Inoue N, Zaima N et al (2010) Imaging mass spectrometry with silver nanoparticles reveals the distribution of fatty acids in mouse retinal sections. J Am Soc Mass Spectrom 21:1446–1454.  https://doi.org/10.1016/j.jasms.2010.04.005 CrossRefPubMedGoogle Scholar
  115. 115.
    Chu H-W, Lai C-S, Ko J-Y et al (2019) Nanoparticle-Based LDI-MS Immunoassay for the Multiple Diagnosis of Viral Infections. ACS Sensors 4:1543–1551.  https://doi.org/10.1021/acssensors.9b00054 CrossRefPubMedGoogle Scholar
  116. 116.
    Wang M-T, Liu M-H, Wang CRC, Chang SY (2009) Silver-coated gold nanoparticles as concentrating probes and matrices for surface-assisted laser desorption/ionization mass spectrometric analysis of aminoglycosides. J Am Soc Mass Spectrom 20:1925–1932.  https://doi.org/10.1016/j.jasms.2009.06.018 CrossRefPubMedGoogle Scholar
  117. 117.
    Nizioł J, Rode W, Zieliński Z, Ruman T (2013) Matrix-free laser desorption-ionization with silver nanoparticle-enhanced steel targets. Int J Mass Spectrom 335:22–32.  https://doi.org/10.1016/j.ijms.2012.10.009 CrossRefGoogle Scholar
  118. 118.
    Jackson SN, Baldwin K, Muller L et al (2014) Imaging of lipids in rat heart by MALDI-MS with silver nanoparticles. Anal Bioanal Chem 406:1377–1386.  https://doi.org/10.1007/s00216-013-7525-6 CrossRefPubMedGoogle Scholar
  119. 119.
    Castellana E, Sherrod S, Russell D (2008) Nanoparticles for Selective Laser Desorption/Ionization in Mass Spectrometry. J Assoc Lab Autom 13:330–334.  https://doi.org/10.1016/j.jala.2008.08.002 CrossRefGoogle Scholar
  120. 120.
    Gamez RC, Castellana ET, Russell DH (2013) Sol-Gel-derived silver-nanoparticle-embedded thin film for mass spectrometry-based biosensing. Langmuir 29:6502–6507.  https://doi.org/10.1021/la4008526 CrossRefPubMedGoogle Scholar
  121. 121.
    Zhu Q, Teng F, Wang Z, et al (2019) Superhydrophobic Glass Substrates Coated with Fluorosilane-Coated Silica Nanoparticles and Silver Nanoparticles for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. ACS Appl Nano Mater acsanm.9b00688.  https://doi.org/10.1021/acsanm.9b00688 CrossRefGoogle Scholar
  122. 122.
    Sudhir P-R, Shrivas K, Zhou Z-C, Wu H-F (2008) Single drop microextraction using silver nanoparticles as electrostatic probes for peptide analysis in atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry and comparison with gold electrostatic probes and silver hydrophobic. Rapid Commun Mass Spectrom 22:3076–3086.  https://doi.org/10.1002/rcm.3710 CrossRefPubMedGoogle Scholar
  123. 123.
    Hong M, Xu L, Wang F et al (2016) A direct assay of carboxyl-containing small molecules by SALDI-MS on a AgNP/rGO-based nanoporous hybrid film. Analyst 141:2712–2726.  https://doi.org/10.1039/c5an02440d CrossRefPubMedGoogle Scholar
  124. 124.
    Silina YE, Koch M, Volmer DA (2015) Influence of surface melting effects and availability of reagent ions on LDI-MS efficiency after UV laser irradiation of Pd nanostructures. J Mass Spectrom 50:578–585.  https://doi.org/10.1002/jms.3564 CrossRefGoogle Scholar
  125. 125.
    Chen Y-S, Ding J, He X-M et al (2018) Synthesis of tellurium nanosheet for use in matrix assisted laser desorption/ionization time-of-flight mass spectrometry of small molecules. Microchim Acta 185:368.  https://doi.org/10.1007/s00604-018-2882-7 CrossRefGoogle Scholar
  126. 126.
    Liang Q, Macher T, Xu Y et al (2014) MALDI MS in-source decay of glycans using a glutathione-capped iron oxide nanoparticle matrix. Anal Chem 86:8496–8503.  https://doi.org/10.1021/ac502422a CrossRefPubMedGoogle Scholar
  127. 127.
    Tseng M-C, Obena R, Lu Y-W et al (2010) Dihydrobenzoic Acid Modified Nanoparticle as a MALDI-TOF MS Matrix for Soft Ionization and Structure Determination of Small Molecules with Diverse Structures. J Am Soc Mass Spectrom 21:1930–1939.  https://doi.org/10.1016/j.jasms.2010.08.001 CrossRefPubMedGoogle Scholar
  128. 128.
    Zhao Q, Xu J, Yin J, Feng Y-Q (2015) Humic acids as both matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and adsorbent for magnetic solid phase extraction. Anal Chim Acta 889:138–146.  https://doi.org/10.1016/j.aca.2015.07.040 CrossRefPubMedGoogle Scholar
  129. 129.
    Abdelhamid HN, Lin YC, Wu HF (2017) Thymine chitosan nanomagnets for specific preconcentration of mercury (II) prior to analysis using SELDI-MS. Microchim Acta 184:1517–1527.  https://doi.org/10.1007/s00604-017-2083-9 CrossRefGoogle Scholar
  130. 130.
    Yang H, Su R, Wishnok JS et al (2019) Magnetic silica nanoparticles for use in matrix-assisted laser desorption ionization mass spectrometry of labile biomolecules such as oligosaccharides, amino acids, peptides and nucleosides. Microchim Acta 186:104.  https://doi.org/10.1007/s00604-018-3208-5 CrossRefGoogle Scholar
  131. 131.
    Abdelhamid HN, Wu H-F (2014) Facile synthesis of nano silver ferrite (AgFeO2) modified with chitosan applied for biothiol separation. Mater Sci Eng C 45:438–445.  https://doi.org/10.1016/j.msec.2014.08.071 CrossRefGoogle Scholar
  132. 132.
    Zhang K, Hu D, Deng S et al (2019) Phytic acid functionalized Fe3O4 nanoparticles loaded with Ti(IV) ions for phosphopeptide enrichment in mass spectrometric analysis. Microchim Acta 186:68.  https://doi.org/10.1007/s00604-018-3177-8 CrossRefGoogle Scholar
  133. 133.
    Shrivas K, Hayasaka T, Sugiura Y, Setou M (2011) Method for Simultaneous Imaging of Endogenous Low Molecular Weight Metabolites in Mouse Brain Using TiO 2 Nanoparticles in Nanoparticle-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry. Anal Chem 83:7283–7289.  https://doi.org/10.1021/ac201602s CrossRefPubMedGoogle Scholar
  134. 134.
    Wang J, Li J, Wang Y et al (2016) A novel double-component MOAC honeycomb composite with pollen grains as a template for phosphoproteomics research. Talanta 154:141–149.  https://doi.org/10.1016/j.talanta.2016.03.061 CrossRefPubMedGoogle Scholar
  135. 135.
    Wei XN, Wang HL (2017) Facile fabrication of hydrophilic PAA-Ti/TiO2 nanocomposite for selective enrichment and detection of phosphopeptides from complex biological samples. Anal Chim Acta 949:67–75.  https://doi.org/10.1016/j.aca.2016.10.036 CrossRefPubMedGoogle Scholar
  136. 136.
    Kim J-I, Ryu S-Y, Park J-M et al (2014) Nylon nanoweb with TiO2 nanoparticles as a solid matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 28:2427–2436.  https://doi.org/10.1002/rcm.7036 CrossRefPubMedGoogle Scholar
  137. 137.
    Lin Z, Cai Z (2018) Negative ion laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules by using nanostructured substrate as matrices. Mass Spectrom Rev 37:681–696.  https://doi.org/10.1002/mas.21558 CrossRefPubMedGoogle Scholar
  138. 138.
    Kim Y-K, Wang L-S, Landis R et al (2017) A layer-by-layer assembled MoS 2 thin film as an efficient platform for laser desorption/ionization mass spectrometry analysis of small molecules. Nanoscale 9:10854–10860.  https://doi.org/10.1039/C7NR02949G CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Amin MO, Al-Hetlani E (2019) Tailoring the surface chemistry of SiO2-based monoliths to enhance the selectivity of SALDI-MS analysis of small molecules. Talanta 200:458–467.  https://doi.org/10.1016/j.talanta.2019.03.078 CrossRefPubMedGoogle Scholar
  140. 140.
    Shmigol IV, Alekseev SA, Lavrynenko OY et al (2009) Chemically modified porous silicon for laser desorption/ionization mass spectrometry of ionic dyes. J Mass Spectrom 44:1234–1240.  https://doi.org/10.1002/jms.1604 CrossRefPubMedGoogle Scholar
  141. 141.
    Xu D, Gao M, Deng C, Zhang X (2016) Ultrasensitive enrichment of phosphopeptides with Ti4+ immobilized SiO 2 graphene-like multilayer nanosheets. Analyst 141:3421–3427.  https://doi.org/10.1039/C6AN00361C CrossRefPubMedGoogle Scholar
  142. 142.
    Wang Q, He XM, Chen X et al (2017) Pyridoxal 5′-phosphate mediated preparation of immobilized metal affinity material for highly selective and sensitive enrichment of phosphopeptides. J Chromatogr A 1499:30–37.  https://doi.org/10.1016/j.chroma.2017.03.085 CrossRefPubMedGoogle Scholar
  143. 143.
    Shen Z, Thomas JJ, Averbuj C et al (2001) Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Anal Chem 73:612–619.  https://doi.org/10.1021/ac000746f CrossRefPubMedGoogle Scholar
  144. 144.
    Alhmoud HZ, Guinan TM, Elnathan R et al (2014) Surface-assisted laser desorption/ionization mass spectrometry using ordered silicon nanopillar arrays. Analyst 139:5999–6009.  https://doi.org/10.1039/C4AN01391C CrossRefPubMedGoogle Scholar
  145. 145.
    Zhu Q, Teng F, Wang Z et al (2019) Confining analyte droplets on visible Si pillars for improving reproducibility and sensitivity of SALDI-TOF MS. Anal Bioanal Chem 411:1135–1142.  https://doi.org/10.1007/s00216-018-01565-5 CrossRefPubMedGoogle Scholar
  146. 146.
    Li X, Chen X, Tan J et al (2017) Palladium modified porous silicon as multi-functional MALDI chip for serum peptide detection. Analyst 142:586–590.  https://doi.org/10.1039/C6AN02165D CrossRefPubMedGoogle Scholar
  147. 147.
    Guild GE, Lenehan CE, Walker GS (2010) Surface-assisted laser desorption ionisation time-of-flight mass spectrometry with an activated carbon surface for the rapid detection of underivatised steroids. Int J Mass Spectrom 294:16–22.  https://doi.org/10.1016/j.ijms.2010.04.001 CrossRefGoogle Scholar
  148. 148.
    Black C, Poile C, Langley J, Herniman J (2006) The use of pencil lead as a matrix and calibrant for matrix-assisted laser desorption/ionisation. Rapid Commun Mass Spectrom 20:1053–1060.  https://doi.org/10.1002/rcm.2408 CrossRefPubMedGoogle Scholar
  149. 149.
    Walton SL, Mitchell DJ (2012) A novel rapid detection approach for the analysis of radionuclides in environmental samples using graphite MALDI mass spectrometry. J Radioanal Nucl Chem 296:1113–1118.  https://doi.org/10.1007/s10967-012-2176-1 CrossRefGoogle Scholar
  150. 150.
    Ng EWY, Lam HS, Ng PC, Poon TCW (2013) Quantification of citrulline by parallel fragmentation monitoring - A novel method using graphitized carbon nanoparticles and MALDI-TOF/TOF mass spectrometry. Clin Chim Acta 420:121–127.  https://doi.org/10.1016/j.cca.2012.10.039 CrossRefPubMedGoogle Scholar
  151. 151.
    Abdelhamid HN, Wu H-F (2012) A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors. Anal Chim Acta 751:94–104.  https://doi.org/10.1016/j.aca.2012.09.012 CrossRefPubMedGoogle Scholar
  152. 152.
    Abdelhamid HN, Wu H-F (2014) Ultrasensitive, Rapid, and Selective Detection of Mercury Using Graphene Assisted Laser Desorption/Ionization Mass Spectrometry. J Am Soc Mass Spectrom 25:861–868.  https://doi.org/10.1007/s13361-014-0825-z CrossRefPubMedGoogle Scholar
  153. 153.
    Hua P-Y, Manikandan M, Abdelhamid HN, Wu H-F (2014) Graphene nanoflakes as an efficient ionizing matrix for MALDI-MS based lipidomics of cancer cells and cancer stem cells. J Mater Chem B 2:7334–7343CrossRefGoogle Scholar
  154. 154.
    Ma N, Bian W, Li R et al (2015) Quantitative analysis of nitro-polycyclic aromatic hydrocarbons in PM 2.5 samples with graphene as a matrix by MALDI-TOF MS. Anal Methods 7:3967–3971.  https://doi.org/10.1039/C5AY00341E CrossRefGoogle Scholar
  155. 155.
    Min Q, Zhang X, Chen X et al (2014) N-doped graphene: an alternative carbon-based matrix for highly efficient detection of small molecules by negative ion MALDI-TOF MS. Anal Chem 86:9122–9130.  https://doi.org/10.1021/ac501943n CrossRefPubMedGoogle Scholar
  156. 156.
    Wang J, Liang Y, Mao Y et al (2019) A selective adsorption-based separation of low-mass molecules from biological samples towards high-throughput mass spectrometry analysis in a single drop of human whole blood. Talanta 202:237–243.  https://doi.org/10.1016/j.talanta.2019.05.005 CrossRefPubMedGoogle Scholar
  157. 157.
    Qin H, Gao P, Wang F et al (2011) Highly Efficient Extraction of Serum Peptides by Ordered Mesoporous Carbon. Angew Chem Int Ed 50:12218–12221.  https://doi.org/10.1002/anie.201103666 CrossRefGoogle Scholar
  158. 158.
    Kuo TR, Wang DY, Chiu YC et al (2014) Layer-by-layer thin film of reduced graphene oxide and gold nanoparticles as an effective sample plate in laser-induced desorption/ionization mass spectrometry. Anal Chim Acta 809:97–103.  https://doi.org/10.1016/j.aca.2013.11.050 CrossRefPubMedGoogle Scholar
  159. 159.
    Lin Z, Zheng J, Lin G et al (2015) Negative Ion Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Small Molecules Using Graphitic Carbon Nitride Nanosheet Matrix. Anal Chem 87:8005–8012.  https://doi.org/10.1021/acs.analchem.5b02066 CrossRefPubMedGoogle Scholar
  160. 160.
    Sun H, Zhang Q, Zhang L et al (2017) Facile preparation of molybdenum (VI) oxide – Modified graphene oxide nanocomposite for specific enrichment of phosphopeptides. J Chromatogr A 1521:36–43.  https://doi.org/10.1016/j.chroma.2017.08.029 CrossRefPubMedGoogle Scholar
  161. 161.
    Wu E, Feng K, Shi R et al (2019) Hybrid CuCoO–GO enables ultrasensitive detection of antibiotics with enhanced laser desorption/ionization at nano-interfaces. Chem Sci 10:257–267.  https://doi.org/10.1039/C8SC03692F CrossRefPubMedGoogle Scholar
  162. 162.
    Kawasaki H, Nakai K, Arakawa R et al (2012) Functionalized graphene-coated cobalt nanoparticles for highly efficient surface-assisted laser desorption/ionization mass spectrometry analysis. Anal Chem 84:9268–9275.  https://doi.org/10.1021/ac302004g CrossRefPubMedGoogle Scholar
  163. 163.
    Al-Hetlani E, Amin MO, Madkour M, Nazeer AA (2018) CeO2-CB nanocomposite as a novel SALDI substrate for enhancing the detection sensitivity of pharmaceutical drug molecules in beverage samples. Talanta 185:439–445.  https://doi.org/10.1016/j.talanta.2018.03.102 CrossRefPubMedGoogle Scholar
  164. 164.
    Pan C, Xu S, Hu L et al (2005) Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS. J Am Soc Mass Spectrom 16:883–892.  https://doi.org/10.1016/j.jasms.2005.03.009 CrossRefPubMedGoogle Scholar
  165. 165.
    Chen S, Zheng H, Wang J et al (2013) Carbon nanodots as a matrix for the analysis of low-molecular-weight molecules in both positive- and negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantification of glucose and uric acid in real samples. Anal Chem 85:6646–6652.  https://doi.org/10.1021/ac401601r CrossRefPubMedGoogle Scholar
  166. 166.
    Maleki S, Lee D, Kim Y, Kim J (2019) Synthesis and application of nitrogen-doped carbon dots as a matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Mass Spectrom 442:44–50.  https://doi.org/10.1016/j.ijms.2019.05.004 CrossRefGoogle Scholar
  167. 167.
    Abdelhamid HN, Talib A, Wu HF (2017) One pot synthesis of gold – carbon dots nanocomposite and its application for cytosensing of metals for cancer cells. Talanta 166:357–363.  https://doi.org/10.1016/j.talanta.2016.11.030 CrossRefPubMedGoogle Scholar
  168. 168.
    Yang S-S, Shi M-Y, Tao Z-R et al (2019) Recent applications of metal–organic frameworks in matrix-assisted laser desorption/ionization mass spectrometry. Anal Bioanal Chem 411:4509–4522.  https://doi.org/10.1007/s00216-019-01876-1 CrossRefPubMedGoogle Scholar
  169. 169.
    Han G, Zeng Q, Jiang Z et al (2017) MIL-101(Cr) as matrix for sensitive detection of quercetin by matrix-assisted laser desorption/ionization mass spectrometry. Talanta 164:355–361.  https://doi.org/10.1016/j.talanta.2016.11.044 CrossRefPubMedGoogle Scholar
  170. 170.
    Yang X, Lin Z, Yan X, Cai Z (2016) Zeolitic imidazolate framework nanocrystals for enrichment and direct detection of environmental pollutants by negative ion surface-assisted laser desorption/ionization time-of-flight mass spectrometry. RSC Adv 6:23790–23793.  https://doi.org/10.1039/C6RA00877A CrossRefGoogle Scholar
  171. 171.
    Lin Z, Bian W, Zheng J, Cai Z (2015) Magnetic metal–organic framework nanocomposites for enrichment and direct detection of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Chem Commun 51:8785–8788.  https://doi.org/10.1039/C5CC02495A CrossRefGoogle Scholar
  172. 172.
    Wang H, Wang X, Bian W et al (2019) Analysis of Nitropolycyclic Aromatic Hydrocarbons in Fine Particulate Matter by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Using Fe3O4/ZIF-8 Magnetic Nanocomposites as Matrix. J Appl Spectrosc 86:89–95.  https://doi.org/10.1007/s10812-019-00786-5 CrossRefGoogle Scholar
  173. 173.
    Zhao M, Xie Y, Chen H, Deng C (2017) Efficient extraction of low-abundance peptides from digested proteins and simultaneous exclusion of large-sized proteins with novel hydrophilic magnetic zeolitic imidazolate frameworks. Talanta 167:392–397.  https://doi.org/10.1016/j.talanta.2017.02.038 CrossRefPubMedGoogle Scholar
  174. 174.
    Chen Y, Xiong Z, Peng L et al (2015) Facile Preparation of Core-Shell Magnetic Metal-Organic Framework Nanoparticles for the Selective Capture of Phosphopeptides. ACS Appl Mater Interfaces 7:16338–16347.  https://doi.org/10.1021/acsami.5b03335 CrossRefPubMedGoogle Scholar
  175. 175.
    Zhang W, Yan Z, Gao J et al (2015) Metal-organic framework UiO-66 modified magnetite@silica core-shell magnetic microspheres for magnetic solid-phase extraction of domoic acid from shellfish samples. J Chromatogr A 1400:10–18.  https://doi.org/10.1016/j.chroma.2015.04.061 CrossRefPubMedGoogle Scholar
  176. 176.
    Chang Y-J, Yang S-S, Yu X et al (2018) Ultrahigh efficient laser desorption ionization of saccharides by Ti-based metal-organic frameworks nanosheets. Anal Chim Acta 1032:91–98.  https://doi.org/10.1016/j.aca.2018.06.035 CrossRefPubMedGoogle Scholar
  177. 177.
    Shih Y-H, Chien C-H, Singco B et al (2013) Metal–organic frameworks: new matrices for surface-assisted laser desorption–ionization mass spectrometry. Chem Commun 49:4929–4930.  https://doi.org/10.1039/c3cc40934a CrossRefGoogle Scholar
  178. 178.
    Wang H, Jiao F, Gao F et al (2017) Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides. Talanta 166:133–140.  https://doi.org/10.1016/j.talanta.2017.01.043 CrossRefPubMedGoogle Scholar
  179. 179.
    Zhang Y, Song Y, Wu J et al (2019) A magnetic covalent organic framework as an adsorbent and a new matrix for enrichment and rapid determination of PAHs and their derivatives in PM 2.5 by surface-assisted laser desorption/ionization-time of flight-mass spectrometry. Chem Commun 55:3745–3748.  https://doi.org/10.1039/C9CC00384C CrossRefGoogle Scholar
  180. 180.
    Feng D, Xia Y (2018) Covalent organic framework as efficient desorption/ionization matrix for direct detection of small molecules by laser desorption/ionization mass spectrometry. Anal Chim Acta 1014:58–63.  https://doi.org/10.1016/j.aca.2018.02.017 CrossRefPubMedGoogle Scholar
  181. 181.
    Abdelhamid HN, Wu H-F (2016) Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: from simple molecules to intact cells. Anal Bioanal Chem 408:4485–4502.  https://doi.org/10.1007/s00216-016-9374-6 CrossRefPubMedGoogle Scholar
  182. 182.
    Unnikrishnan B, Chang C-Y, Chu H-W et al (2016) Functional Gold Nanoparticles Coupled with Laser Desorption Ionization Mass Spectrometry for Bioanalysis. Anal Methods 00:1–11.  https://doi.org/10.1039/C6AY02378A CrossRefGoogle Scholar
  183. 183.
    Nayak R, Knapp DR (2010) Matrix-Free LDI Mass Spectrometry Platform Using Patterned Nanostructured Gold Thin Film. Anal Chem 82:7772–7778.  https://doi.org/10.1021/ac1017277 CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Lee J-W, Lee J-H, Oh H-S et al (2012) Selective Analysis of Thiol-Containing Molecules Using Nanoengineered Micro Gold Shells and LDI-TOF MS. Bull Kor Chem Soc 33:3076–3078.  https://doi.org/10.5012/bkcs.2012.33.9.3076 CrossRefGoogle Scholar
  185. 185.
    Son J, Lee G, Cha S (2014) Direct Analysis of Triacylglycerols from Crude Lipid Mixtures by Gold Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry. J Am Soc Mass Spectrom 25:891–894.  https://doi.org/10.1007/s13361-014-0844-9 CrossRefPubMedGoogle Scholar
  186. 186.
    Cioffi N, De Palo F, Calvano CD et al (2008) Core–Shell Gold Nanoparticles as Non-Conventional Matrix for the MALDI-ToF-MS Detection of Amino Acids: A Preliminary Study. Sens Lett 6:654–661.  https://doi.org/10.1166/sl.2008.454 CrossRefGoogle Scholar
  187. 187.
    Pilolli R, Ditaranto N, Monopoli A et al (2014) Designing functionalized gold surfaces and nanostructures for Laser Desorption Ionisation Mass Spectrometry. Vacuum 100:78–83.  https://doi.org/10.1016/j.vacuum.2013.07.032 CrossRefGoogle Scholar
  188. 188.
    Bian J, Olesik SV, Powell DH et al (2017) Surface-assisted laser desorption/ionization time-of-flight mass spectrometry of small drug molecules and high molecular weight synthetic/biological polymers using electrospun composite nanofibers. Analyst 142:1125–1132.  https://doi.org/10.1039/C6AN02444K CrossRefPubMedGoogle Scholar
  189. 189.
    Abdelhamid HN, Wu H-F (2013) Polymer dots for quantifying the total hydrophobic pathogenic lysates in a single drop. Colloids Surf B: Biointerfaces 115C:51–60Google Scholar
  190. 190.
    Chau SL, Tang HW, Ng KM (2016) Gold nanoparticles bridging infra-red spectroscopy and laser desorption/ionization mass spectrometry for direct analysis of over-the-counter drug and botanical medicines. Anal Chim Acta 919:62–69.  https://doi.org/10.1016/j.aca.2016.03.023 CrossRefPubMedGoogle Scholar
  191. 191.
    Kim S, Oh H, Yeo W-S (2015) Analysis of alkanethiolates on gold with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Korean Soc Appl Biol Chem 58:1–8.  https://doi.org/10.1007/s13765-015-0018-x CrossRefGoogle Scholar
  192. 192.
    Kailasa SK, Wu H-F (2012) One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS. Analyst 137:1629.  https://doi.org/10.1039/c2an16008k CrossRefPubMedGoogle Scholar
  193. 193.
    Chiang C-K, Chiang M-C, Lin Z-H et al (2010) Nanomaterial-based surface-assisted laser desorption/ionization mass spectrometry of peptides and proteins. J Am Soc Mass Spectrom 21:1204–1207.  https://doi.org/10.1016/j.jasms.2010.02.028 CrossRefPubMedGoogle Scholar
  194. 194.
    Chiang C-K, Lin Y-W, Chen W-T, Chang H-T (2010) Accurate quantitation of glutathione in cell lysates through surface-assisted laser desorption/ionization mass spectrometry using gold nanoparticles. Nanomedicine Nanotechnology, Biol Med 6:530–537.  https://doi.org/10.1016/j.nano.2010.01.006 CrossRefGoogle Scholar
  195. 195.
    Unnikrishnan B, Chang C-Y, Chu H-W et al (2016) Functional gold nanoparticles coupled with laser desorption ionization mass spectrometry for bioanalysis. Anal Methods 8:8123–8133.  https://doi.org/10.1039/C6AY02378A CrossRefGoogle Scholar
  196. 196.
    Cang J, Chen L-Y, Lin Y-S, Chang H-T (2018) Detection of Metabolites in Cells through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. ACS Omega 3:17386–17391.  https://doi.org/10.1021/acsomega.8b02563 CrossRefGoogle Scholar
  197. 197.
    Tseng Y-T, Harroun SG, Wu C-W et al (2017) Satellite-like Gold Nanocomposites for Targeted Mass Spectrometry Imaging of Tumor Tissues. Nanotheranostics 1:141–153.  https://doi.org/10.7150/ntno.18897 CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Creran B, Yan B, Moyano DF et al (2012) Laser desorption ionization mass spectrometric imaging of mass barcoded gold nanoparticles for security applications. Chem Commun 48:4543.  https://doi.org/10.1039/c2cc30499f CrossRefGoogle Scholar
  199. 199.
    Tang H-W, Wong MY-M, Lam W et al (2011) Molecular histology analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry using gold nanoparticles as matrix. Rapid Commun Mass Spectrom 25:3690–3696.  https://doi.org/10.1002/rcm.5281 CrossRefPubMedGoogle Scholar
  200. 200.
    Ràfols P, Vilalta D, Torres S et al (2018) Assessing the potential of sputtered gold nanolayers in mass spectrometry imaging for metabolomics applications. PLoS One 13:e0208908.  https://doi.org/10.1371/journal.pone.0208908 CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Tang H-W, Wong MY-M, Chan SL-F et al (2011) Molecular Imaging of Banknote and Questioned Document Using Solvent-Free Gold Nanoparticle-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry. Anal Chem 83:453–458.  https://doi.org/10.1021/ac1020485 CrossRefPubMedGoogle Scholar
  202. 202.
    Chau S-L, Tang H-W, Cheng Y-H et al (2017) Chemical Printing of Biological Tissue by Gold Nanoparticle-Assisted Laser Ablation. ACS Omega 2:6031–6038.  https://doi.org/10.1021/acsomega.7b00385 CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Sekuła J, Nizioł J, Rode W, Ruman T (2015) Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging. Analyst 140:6195–6209.  https://doi.org/10.1039/C5AN00943J CrossRefPubMedGoogle Scholar
  204. 204.
    Hua L, Chen J, Ge L, Tan SN (2007) Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides. J Nanopart Res 9:1133–1138.  https://doi.org/10.1007/s11051-007-9244-4 CrossRefGoogle Scholar
  205. 205.
    Hong S, Lee JS, Ryu J et al (2011) Bio-inspired strategy for on-surface synthesis of silver nanoparticles for metal/organic hybrid nanomaterials and LDI-MS substrates. Nanotechnology 22:494020.  https://doi.org/10.1088/0957-4484/22/49/494020 CrossRefPubMedGoogle Scholar
  206. 206.
    Shrivas K, Wu H-F (2008) Applications of silver nanoparticles capped with different functional groups as the matrix and affinity probes in surface-assisted laser desorption/ionization time-of-flight and atmospheric pressure matrix-assisted laser desorption/ionization ion trap mas. Rapid Commun Mass Spectrom 22:2863–2872.  https://doi.org/10.1002/rcm.3681 CrossRefPubMedGoogle Scholar
  207. 207.
    Chiu TC, Chang LC, Chiang CK, Chang HT (2008) Determining Estrogens Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Silver Nanoparticles as the Matrix. J Am Soc Mass Spectrom 19:1343–1346.  https://doi.org/10.1016/j.jasms.2008.06.006 CrossRefPubMedGoogle Scholar
  208. 208.
    Sherrod SD, Diaz AJ, Russell WK et al (2008) Silver nanoparticles as selective ionization probes for analysis of olefins by mass spectrometry. Anal Chem 80:6796–6799.  https://doi.org/10.1021/ac800904g CrossRefPubMedGoogle Scholar
  209. 209.
    Muller L, Baldwin K, Barbacci DC et al (2017) Laser Desorption/Ionization Mass Spectrometric Imaging of Endogenous Lipids from Rat Brain Tissue Implanted with Silver Nanoparticles. J Am Soc Mass Spectrom 28:1716–1728.  https://doi.org/10.1007/s13361-017-1665-4 CrossRefPubMedGoogle Scholar
  210. 210.
    Muller L, Kailas A, Jackson SN et al (2015) Lipid imaging within the normal rat kidney using silver nanoparticles by matrix-assisted laser desorption/ionization mass spectrometry. Kidney Int 88:186–192.  https://doi.org/10.1038/ki.2015.3 CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Jun JH, Song Z, Liu Z et al (2010) High-Spatial and High-Mass Resolution Imaging of Surface Metabolites of Arabidopsis thaliana by Laser Desorption-Ionization Mass Spectrometry Using Colloidal Silver. Anal Chem 82:3255–3265.  https://doi.org/10.1021/ac902990p CrossRefPubMedGoogle Scholar
  212. 212.
    Nizioł J, Ruman T (2013) Surface-transfer mass spectrometry imaging on a monoisotopic silver nanoparticle enhanced target. Anal Chem 85:12070–12076.  https://doi.org/10.1021/ac4031658 CrossRefPubMedGoogle Scholar
  213. 213.
    Dufresne M, Thomas A, Breault-Turcot J et al (2013) Silver-Assisted Laser Desorption Ionization For High Spatial Resolution Imaging Mass Spectrometry of Olefins from Thin Tissue Sections. Anal Chem 85:3318–3324.  https://doi.org/10.1021/ac3037415 CrossRefPubMedGoogle Scholar
  214. 214.
    Guan M, Zhang Z, Li S et al (2018) Silver nanoparticles as matrix for MALDI FTICR MS profiling and imaging of diverse lipids in brain. Talanta 179:624–631.  https://doi.org/10.1016/j.talanta.2017.11.067 CrossRefPubMedGoogle Scholar
  215. 215.
    Picca RA, Calvano CD, Lo Faro MJ et al (2016) Functionalization of silicon nanowire arrays by silver nanoparticles for the laser desorption ionization mass spectrometry analysis of vegetable oils. J Mass Spectrom 51:849–856.  https://doi.org/10.1002/jms.3826 CrossRefPubMedGoogle Scholar
  216. 216.
    Yang M, Fujino T (2013) Silver nanoparticles on zeolite surface for laser desorption/ionization mass spectrometry of low molecular weight compounds. Chem Phys Lett 576:61–64.  https://doi.org/10.1016/j.cplett.2013.05.030 CrossRefGoogle Scholar
  217. 217.
    Zhao Y, Deng G, Liu X et al (2016) MoS2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chim Acta 937:87–95.  https://doi.org/10.1016/j.aca.2016.06.026 CrossRefPubMedGoogle Scholar
  218. 218.
    Kim Y-K, Kang K, Kim H et al (2019) Laser desorption/ionization mass spectrometry-based compositional analysis of Au–Ag nanoplates synthesized by galvanic replacement and their application for small molecule analysis. J Ind Eng Chem 71:318–326.  https://doi.org/10.1016/j.jiec.2018.11.042 CrossRefGoogle Scholar
  219. 219.
    Shrivas K, Agrawal K, Wu H-F (2011) Application of platinum nanoparticles as affinity probe and matrix for direct analysis of small biomolecules and microwave digested proteins using matrix-assisted laser desorption/ionization mass spectrometry. Analyst 136:2852.  https://doi.org/10.1039/c1an15211d CrossRefPubMedGoogle Scholar
  220. 220.
    Ozawa T, Osaka I, Ihozaki T et al (2015) Simultaneous detection of phosphatidylcholines and glycerolipids using matrix-enhanced surface-assisted laser desorption/ionization-mass spectrometry with sputter-deposited platinum film. J Mass Spectrom 50:1264–1269.  https://doi.org/10.1002/jms.3700 CrossRefPubMedGoogle Scholar
  221. 221.
    Kawasaki H, Ozawa T, Hisatomi H, Arakawa R (2012) Platinum vapor deposition surface-assisted laser desorption/ionization for imaging mass spectrometry of small molecules. Rapid Commun Mass Spectrom 26:1849–1858.  https://doi.org/10.1002/rcm.6301 CrossRefPubMedGoogle Scholar
  222. 222.
    Silina YE, Meier F, Nebolsin VA et al (2014) Novel Galvanic Nanostructures of Ag and Pd for Efficient Laser Desorption/Ionization of Low Molecular Weight Compounds. J Am Soc Mass Spectrom 25:841–851.  https://doi.org/10.1007/s13361-014-0853-8 CrossRefPubMedGoogle Scholar
  223. 223.
    Hansen RL, Dueñas ME, Lee YJ (2019) Sputter-Coated Metal Screening for Small Molecule Analysis and High-Spatial Resolution Imaging in Laser Desorption Ionization Mass Spectrometry. J Am Soc Mass Spectrom 30:299–308.  https://doi.org/10.1007/s13361-018-2081-0 CrossRefPubMedGoogle Scholar
  224. 224.
    Schnapp A, Niehoff A-C, Koch A, Dreisewerd K (2016) Laser desorption/ionization mass spectrometry of lipids using etched silver substrates. Methods 104:194–203.  https://doi.org/10.1016/j.ymeth.2016.01.014 CrossRefGoogle Scholar
  225. 225.
    Prysiazhnyi V, Dycka F, Kratochvil J et al (2019) Silver nanoparticles for solvent-free detection of small molecules and mass-to-charge calibration of laser desorption/ionization mass spectrometry. J Vac Sci Technol B 37:012906.  https://doi.org/10.1116/1.5050878 CrossRefGoogle Scholar
  226. 226.
    Shastri L, Abdelhamid HN, Nawaz M, Wu H-F (2015) Synthesis, characterization and bifunctional applications of bidentate silver nanoparticle assisted single drop microextraction as a highly sensitive preconcentrating probe for protein analysis. RSC Adv 5:41595–41603.  https://doi.org/10.1039/C5RA04032A CrossRefGoogle Scholar
  227. 227.
    Gopal J, Abdelhamid HN, Huang JH, Wu HF (2016) Nondestructive detection of the freshness of fruits and vegetables using gold and silver nanoparticle mediated graphene enhanced Raman spectroscopy. Sensors Actuators B Chem 224:413–424.  https://doi.org/10.1016/j.snb.2015.08.123 CrossRefGoogle Scholar
  228. 228.
    Kurita M, Arakawa R, Kawasaki H (2016) Silver nanoparticle functionalized glass fibers for combined surface-enhanced Raman scattering spectroscopy (SERS)/surface-assisted laser desorption/ionization (SALDI) mass spectrometry via plasmonic/thermal hot spots. Analyst 141:5835–5841.  https://doi.org/10.1039/C6AN00511J CrossRefPubMedGoogle Scholar
  229. 229.
    Breault-Turcot J, Chaurand P, Masson JF (2014) Unravelling nonspecific adsorption of complex protein mixture on surfaces with SPR and MS. Anal Chem 86:9612–9619.  https://doi.org/10.1021/ac502077b CrossRefPubMedGoogle Scholar
  230. 230.
    Abdelhamid HN, Wu HF (2015) Reduced graphene oxide conjugate thymine as a new probe for ultrasensitive and selective fluorometric determination of mercury(II) ions. Microchim Acta 182:1609–1617.  https://doi.org/10.1007/s00604-015-1461-4 CrossRefGoogle Scholar
  231. 231.
    Nitta S, Yamamoto A, Kurita M et al (2014) Gold-decorated titania nanotube arrays as dual-functional platform for surface-enhanced raman spectroscopy and surface-assisted laser desorption/ionization mass spectrometry. ACS Appl Mater Interfaces 6:8387–8395.  https://doi.org/10.1021/am501291d CrossRefPubMedGoogle Scholar
  232. 232.
    Pavlov J, Attygalle AB (2019) Gold Nanoparticles (AuNPs) as Reactive Matrix for Detection of Trace Levels of HCN in Air by Laser Desorption/Ionization Mass Spectrometry (LDI-MS). J Am Soc Mass Spectrom 30:806–813.  https://doi.org/10.1007/s13361-018-02131-0 CrossRefPubMedGoogle Scholar
  233. 233.
    Sacks CD, Stumpo KA (2018) Gold nanoparticles for enhanced ionization and fragmentation of biomolecules using LDI-MS. J Mass Spectrom 53:1070–1077.  https://doi.org/10.1002/jms.4282 CrossRefPubMedGoogle Scholar
  234. 234.
    Yuan M, Shan Z, Tian B et al (2005) Preparation of highly ordered mesoporous WO3-TiO2 as matrix in matrix-assisted laser desorption/ionization mass spectrometry. Microporous Mesoporous Mater 78:37–41.  https://doi.org/10.1016/j.micromeso.2004.09.014 CrossRefGoogle Scholar
  235. 235.
    Chen CT, Chen YC (2004) Molecularly Imprinted TiO2-Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Selectively Detecting ??-Cyclodextrin. Anal Chem 76:1453–1457.  https://doi.org/10.1021/ac034986h CrossRefPubMedGoogle Scholar
  236. 236.
    Kim J-I, Park J-M, Noh J-Y et al (2016) Analysis of benzylpenicillin in milk using MALDI-TOF mass spectrometry with top-down synthesized TiO2 nanowires as the solid matrix. Chemosphere 143:64–70.  https://doi.org/10.1016/j.chemosphere.2015.04.002 CrossRefPubMedGoogle Scholar
  237. 237.
    Abdelhamid HN, Bhaisare ML, Wu H-F (2014) Ceria nanocubic-ultrasonication assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis. Talanta 120:208–217.  https://doi.org/10.1016/j.talanta.2013.11.078 CrossRefPubMedGoogle Scholar
  238. 238.
    Chen CT, Chen YC (2004) Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun Mass Spectrom 18:1956–1964.  https://doi.org/10.1002/rcm.1572 CrossRefPubMedGoogle Scholar
  239. 239.
    Taira S, Taguchi H, Fukuda R et al (2014) Silver Oxide Based Nanoparticle Assisted Laser Desorption/Ionization Mass Spectrometry for the Detection of Low Molecular Weight Compounds. Mass Spectrom 3:S0025–S0025.  https://doi.org/10.5702/massspectrometry.S0025 CrossRefGoogle Scholar
  240. 240.
    Abdelhamid HN, Talib A, Wu H-F (2015) Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents. RSC Adv 5:34594–34602CrossRefGoogle Scholar
  241. 241.
    Abdelhamid HN, Talib A, Wu H-F (2015) Correction: Facile synthesis of water soluble silver ferrite (AgFeO 2 ) nanoparticles and their biological application as antibacterial agents. RSC Adv 5:39952–39953.  https://doi.org/10.1039/C5RA90041G CrossRefGoogle Scholar
  242. 242.
    Lin Z, Zheng J, Bian W, Cai Z (2015) CuFe2O4 magnetic nanocrystal clusters as a matrix for the analysis of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst 140:5287–5294.  https://doi.org/10.1039/C5AN00625B CrossRefPubMedGoogle Scholar
  243. 243.
    Watanabe T, Kawasaki H, Yonezawa T, Arakawa R (2008) Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J Mass Spectrom 43:1063–1071.  https://doi.org/10.1002/jms.1385 CrossRefPubMedGoogle Scholar
  244. 244.
    Gedda G, Abdelhamid HN, Khan MS, Wu H-F (2014) ZnO nanoparticle-modified polymethyl methacrylate-assisted dispersive liquid–liquid microextraction coupled with MALDI-MS for rapid pathogenic bacteria analysis. RSC Adv 4:45973–45983.  https://doi.org/10.1039/C4RA03391D CrossRefGoogle Scholar
  245. 245.
    Bernier MC, Wysocki VH, Dagan S (2015) Laser desorption ionization of small molecules assisted by tungsten oxide and rhenium oxide particles. J Mass Spectrom 50:891–898.  https://doi.org/10.1002/jms.3597 CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    López De Laorden C, Beloqui A, Yate L et al (2015) Nanostructured indium tin oxide slides for small-molecule profiling and imaging mass spectrometry of metabolites by surface-assisted laser desorption ionization ms. Anal Chem 87:431–440.  https://doi.org/10.1021/ac5025864 CrossRefPubMedGoogle Scholar
  247. 247.
    Li Z, Zhang Y-W, Xin Y-L et al (2014) A lithium-rich composite metal oxide used as a SALDI-MS matrix for the determination of small biomolecules. Chem Commun 50:15397–15399.  https://doi.org/10.1039/C4CC07479C CrossRefGoogle Scholar
  248. 248.
    Xu D, Yan G, Gao M et al (2017) Selective enrichment of glycopeptides/phosphopeptides using Fe3O4@Au-B(OH)2@mTiO2 core-shell microspheres. Talanta 166:154–161.  https://doi.org/10.1016/j.talanta.2017.01.030 CrossRefPubMedGoogle Scholar
  249. 249.
    Lin H, Yuan K, Deng C (2017) Preparation of a TiO2 -NH2 modified MALDI plate for on-plate simultaneous enrichment of phosphopeptides and glycopeptides. Talanta 175:427–434.  https://doi.org/10.1016/j.talanta.2017.07.078 CrossRefPubMedGoogle Scholar
  250. 250.
    Gao C, Zhen D, He N et al (2019) Two-dimensional TiO2 nanoflakes enable rapid SALDI-TOF-MS detection of toxic small molecules (dyes and their metabolites) in complex environments. Talanta 196:1–8.  https://doi.org/10.1016/j.talanta.2018.11.104 CrossRefPubMedGoogle Scholar
  251. 251.
    Zhao D, He Z, Wang G et al (2016) Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment. J Colloid Interface Sci 478:227–235.  https://doi.org/10.1016/j.jcis.2016.05.054 CrossRefPubMedGoogle Scholar
  252. 252.
    Dai J, Wang M, Liu H (2017) Highly selective enrichment of phosphopeptides using Zr4+-immobilized Titania nanoparticles. Talanta 164:222–227.  https://doi.org/10.1016/j.talanta.2016.11.058 CrossRefPubMedGoogle Scholar
  253. 253.
    Chen X, Li S, Zhang X et al (2015) Weaving a two-dimensional fishing net from titanoniobate nanosheets embedded with Fe 3 O 4 nanocrystals for highly efficient capture and isotope labeling of phosphopeptides. Nanoscale 7:5815–5825.  https://doi.org/10.1039/C4NR07041K CrossRefPubMedGoogle Scholar
  254. 254.
    Salimi K, Usta DD, Çelikbıçak Ö et al (2017) Highly selective enrichment of phosphopeptides by titanium (IV) attached monodisperse-porous poly(vinylphosphonic acid-co-ethylene dimethacrylate) microspheres. J Chromatogr A 1496:9–19.  https://doi.org/10.1016/j.chroma.2017.03.052 CrossRefPubMedGoogle Scholar
  255. 255.
    Salimi K, Usta DD, Çelikbıçak Ö et al (2017) Ti(IV) carrying polydopamine-coated, monodisperse-porous SiO2 microspheres with stable magnetic properties for highly selective enrichment of phosphopeptides. Colloids Surfaces B Biointerfaces 153:280–290.  https://doi.org/10.1016/j.colsurfb.2017.02.028 CrossRefGoogle Scholar
  256. 256.
    Min Q, Li S, Chen X et al (2015) Magnetite/ceria-codecorated titanoniobate nanosheet: A 2D catalytic nanoprobe for efficient enrichment and programmed dephosphorylation of phosphopeptides. ACS Appl Mater Interfaces 7:9563–9572.  https://doi.org/10.1021/acsami.5b01006 CrossRefPubMedGoogle Scholar
  257. 257.
    Long X, Zhang Z, Li J et al (2017) A combination strategy using two novel cerium-based nanocomposite affinity probes for the selective enrichment of mono- and multi-phosphopeptides in mass spectrometric analysis. Chem Commun 53:4620–4623.  https://doi.org/10.1039/C7CC00540G CrossRefGoogle Scholar
  258. 258.
    Long X-Y, Zhang Z-J, Li J-Y, et al (2017) Controllable Preparation of CuFeMnO 4 Nanospheres as a Novel Multifunctional Affinity Probe for Efficient Adsorption and Selective Enrichment of Low-Abundance Peptides and Phosphopeptides. Anal Chem acs.analchem.7b02476.  https://doi.org/10.1021/acs.analchem.7b02476 CrossRefGoogle Scholar
  259. 259.
    Long XY, Li JY, Sheng D, Lian HZ (2017) Spinel-type manganese ferrite (MnFe2O4) microspheres: A novel affinity probe for selective and fast enrichment of phosphopeptides. Talanta 166:36–45.  https://doi.org/10.1016/j.talanta.2017.01.025 CrossRefPubMedGoogle Scholar
  260. 260.
    Zhang L, Xiong Z, Chen Y et al (2016) Soft-template synthesis of hydrophilic metallic zirconia nanoparticle-incorporated ordered mesoporous carbon composite and its application in phosphopeptide enrichment. RSC Adv 6:30014–30020.  https://doi.org/10.1039/C6RA00326E CrossRefGoogle Scholar
  261. 261.
    Abdelhamid HN (2016) Laser Assisted Synthesis, Imaging and Cancer Therapy of Magnetic Nanoparticles. Mater Focus 5:305–323.  https://doi.org/10.1166/mat.2016.1336 CrossRefGoogle Scholar
  262. 262.
    Komori H, Hashizaki R, Osaka I et al (2015) Nanoparticle-assisted laser desorption/ionization using sinapic acid-modified iron oxide nanoparticles for mass spectrometry analysis. Analyst 140:8134–8137.  https://doi.org/10.1039/C5AN02081F CrossRefPubMedGoogle Scholar
  263. 263.
    Abdelhamid HN, Lin YC, Wu H-F (2017) Magnetic nanoparticle modified chitosan for surface enhanced laser desorption/ionization mass spectrometry of surfactants. RSC Adv 7:41585–41592.  https://doi.org/10.1039/C7RA05982E CrossRefGoogle Scholar
  264. 264.
    Moritake S, Taira S, Sugiura Y et al (2009) Magnetic nanoparticle-based mass spectrometry for the detection of biomolecules in cultured cells. J Nanosci Nanotechnol 9:169–176.  https://doi.org/10.1166/jnn.2009.J012 CrossRefPubMedGoogle Scholar
  265. 265.
    Obena RP, Tseng M-C, Primadona I et al (2015) UV-activated multilayer nanomatrix provides one-step tunable carbohydrate structural characterization in MALDI-MS. Chem Sci 6:4790–4800.  https://doi.org/10.1039/C5SC00546A CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Gopal J, Abdelhamid HN, Hua P-Y, Wu H-F (2013) Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine. J Mater Chem B 1:2463.  https://doi.org/10.1039/c3tb20079e CrossRefGoogle Scholar
  267. 267.
    Ma Y, Zhang X, Zeng T et al (2013) Polydopamine-Coated Magnetic Nanoparticles for Enrichment and Direct Detection of Small Molecule Pollutants Coupled with MALDI-TOF-MS. ACS Appl Mater Interfaces 5:1024–1030.  https://doi.org/10.1021/am3027025 CrossRefPubMedGoogle Scholar
  268. 268.
    Piret G, Kim D, Drobecq H et al (2012) Surface-assisted laser desorption-ionization mass spectrometry on titanium dioxide (TiO2) nanotube layers. Analyst 137:3058–3063.  https://doi.org/10.1039/c2an35207a CrossRefPubMedGoogle Scholar
  269. 269.
    Xu X, Deng C, Gao M et al (2006) Synthesis of Magnetic Microspheres with Immobilized Metal Ions for Enrichment and Direct Determination of Phosphopeptides by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Adv Mater 18:3289–3293.  https://doi.org/10.1002/adma.200601546 CrossRefGoogle Scholar
  270. 270.
    Kim M, Park J, Noh J, et al (2018) Gold-Nanoparticle-Coated Magnetic Beads for Concentration and Ionization of Analytes for Laser Desorption/Ionization Mass Spectrometry. Rapid Commun Mass Spectrom rcm.8372.  https://doi.org/10.1002/rcm.8372
  271. 271.
    Shi C, Meng J, Deng C (2012) Facile synthesis of magnetic graphene and carbon nanotube composites as a novel matrix and adsorbent for enrichment and detection of small molecules by MALDI-TOF MS. J Mater Chem 22:20778.  https://doi.org/10.1039/c2jm34745h CrossRefGoogle Scholar
  272. 272.
    Obena RP, Lin PC, Lu YW et al (2011) Iron oxide nanomatrix facilitating metal ionization in matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 83:9337–9343.  https://doi.org/10.1021/ac2017184 CrossRefPubMedGoogle Scholar
  273. 273.
    Jiang J, Sun X, Li Y et al (2018) Facile synthesis of Fe3O4@PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment. Talanta 178:600–607.  https://doi.org/10.1016/j.talanta.2017.09.071 CrossRefPubMedGoogle Scholar
  274. 274.
    Zhai R, Tian F, Xue R et al (2016) Metal ion-immobilized magnetic nanoparticles for global enrichment and identification of phosphopeptides by mass spectrometry. RSC Adv 6:1670–1677.  https://doi.org/10.1039/C5RA22006H CrossRefGoogle Scholar
  275. 275.
    Long X, Li J, Sheng D, Lian H (2016) Low-cost iron oxide magnetic nanoclusters affinity probe for the enrichment of endogenous phosphopeptides in human saliva. RSC Adv 6:96210–96222.  https://doi.org/10.1039/C6RA11125D CrossRefGoogle Scholar
  276. 276.
    Dupré M, Cantel S, Durand JO et al (2012) Silica nanoparticles pre-spotted onto target plate for laser desorption/ionization mass spectrometry analyses of peptides. Anal Chim Acta 741:47–57.  https://doi.org/10.1016/j.aca.2012.06.037 CrossRefPubMedGoogle Scholar
  277. 277.
    Bhaisare ML, Abdelhamid HN, Wu B-S, Wu H-F (2014) Rapid and direct MALDI-MS identification of pathogenic bacteria from blood using ionic liquid-modified magnetic nanoparticles (Fe3O4@SiO2). J Mater Chem B 2:4671–4683.  https://doi.org/10.1039/C4TB00528G CrossRefGoogle Scholar
  278. 278.
    Wang C, Reed JM, Ma L et al (2012) Biomimic light trapping silicon nanowire arrays for laser desorption/ionization of peptides. J Phys Chem C 116:15415–15420.  https://doi.org/10.1021/jp3034402 CrossRefGoogle Scholar
  279. 279.
    Walker BN, Stolee JA, Pickel DL et al (2010) Tailored silicon nanopost arrays for resonant nanophotonic ion production. J Phys Chem C 114:4835–4840.  https://doi.org/10.1021/jp9110103 CrossRefGoogle Scholar
  280. 280.
    Korte AR, Morris NJ, Vertes A (2019) High Throughput Complementary Analysis and Quantitation of Metabolites by MALDI- and Silicon Nanopost Array-Laser Desorption/Ionization-Mass Spectrometry. Anal Chem 91:3951–3958.  https://doi.org/10.1021/acs.analchem.8b05074 CrossRefPubMedGoogle Scholar
  281. 281.
    Wang Y, Zeng Z, Li J et al (2013) Biomimetic Antireflective Silicon Nanocones Array for Small Molecules Analysis. J Am Soc Mass Spectrom 24:66–73.  https://doi.org/10.1007/s13361-012-0498-4 CrossRefPubMedGoogle Scholar
  282. 282.
    Gorecka-Drzazga A, Dziuban J, Drzazga W et al (2005) Desorption/ionization mass spectrometry on array of silicon microtips. J Vac Sci Technol B Microelectron Nanom Struct 23:819.  https://doi.org/10.1116/1.1861046 CrossRefGoogle Scholar
  283. 283.
    Tsao CW, Kumar P, Liu J, DeVoe DL (2008) Dynamic electrowetting on nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry. Anal Chem 80:2973–2981.  https://doi.org/10.1021/ac7026029 CrossRefPubMedGoogle Scholar
  284. 284.
    Cuiffi JD, Hayes DJ, Fonash SJ et al (2001) Desorption-ionization mass spectrometry using deposited nanostructured silicon films. Anal Chem 73:1292–1295.  https://doi.org/10.1021/ac001081k CrossRefPubMedGoogle Scholar
  285. 285.
    Alimpiev S, Grechnikov A, Sunner J et al (2008) On the role of defects and surface chemistry for surface-assisted laser desorption ionization from silicon. J Chem Phys 128:014711.  https://doi.org/10.1063/1.2802304 CrossRefPubMedGoogle Scholar
  286. 286.
    Chen Y, Li D, Bie Z et al (2016) Coupling of Phosphate-Imprinted Mesoporous Silica Nanoparticles-Based Selective Enrichment with Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry for Highly Efficient Analysis of Protein Phosphorylation. Anal Chem 88:1447–1454.  https://doi.org/10.1021/acs.analchem.5b04343 CrossRefPubMedGoogle Scholar
  287. 287.
    Luo G, Chen Y, Daniels H et al (2006) Internal Energy Transfer in Laser Desorption/Ionization from Silicon Nanowires. J Phys Chem B 110:13381–13386.  https://doi.org/10.1021/jp0609582 CrossRefPubMedGoogle Scholar
  288. 288.
    Çelikbıçak Ö, Demirel G, Pişkin E, Salih B (2012) Small molecule analysis using laser desorption/ionization mass spectrometry on nano-coated silicon with self-assembled monolayers. Anal Chim Acta 729:54–61.  https://doi.org/10.1016/j.aca.2012.04.006 CrossRefPubMedGoogle Scholar
  289. 289.
    Yao J, Sun N, Wang J et al (2017) Rapid synthesis of titanium(IV)-immobilized magnetic mesoporous silica nanoparticles for endogenous phosphopeptides enrichment. Proteomics 17:1600320.  https://doi.org/10.1002/pmic.201600320 CrossRefGoogle Scholar
  290. 290.
    Guinan T, Ronci M, Kobus H, Voelcker NH (2012) Rapid detection of illicit drugs in neat saliva using desorption/ionization on porous silicon. Talanta 99:791–798.  https://doi.org/10.1016/j.talanta.2012.07.029 CrossRefPubMedGoogle Scholar
  291. 291.
    Mullens CP, Anugu SR, Gorski W, Bach SBH (2011) Modified silica-containing matrices towards the MALDI-TOF-MS detection of small molecules. Int J Mass Spectrom 308:311–315.  https://doi.org/10.1016/j.ijms.2011.08.004 CrossRefGoogle Scholar
  292. 292.
    Zeng Z, Wang Y, Guo X et al (2014) On-Plate Self-Desalting and Matrix-Free LDI MS Analysis of Peptides With a Surface Patterned Sample Support. J Am Soc Mass Spectrom 25:895–898.  https://doi.org/10.1007/s13361-014-0845-8 CrossRefPubMedGoogle Scholar
  293. 293.
    Amini N, Shariatgorji M, Thorsén G (2009) SALDI-MS Signal enhancement using oxidized graphitized carbon black nanoparticles. J Am Soc Mass Spectrom 20:1207–1213.  https://doi.org/10.1016/j.jasms.2009.02.017 CrossRefPubMedGoogle Scholar
  294. 294.
    Wang J, Liu Q, Liang Y, Jiang G (2016) Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal Bioanal Chem 408:2861–2873.  https://doi.org/10.1007/s00216-015-9255-4 CrossRefPubMedGoogle Scholar
  295. 295.
    Abdelhamid HN, Wu H-F (2019) Graphene and Its Derivatives as Platforms for MALDI-MS. In: Tobias Stauber (ed) HANDBOOK OF GRAPHENE 2, Volume 2: Physics, Chemistry and Biology. Scrivener PublishingGoogle Scholar
  296. 296.
    Abdelhamid HN, Wu H-F (2015) Synthesis of a highly dispersive sinapinic acid@graphene oxide (SA@GO) and its applications as a novel surface assisted laser desorption/ionization mass spectrometry for proteomics and pathogenic bacteria biosensing. Analyst 140:1555–1565.  https://doi.org/10.1039/c4an02158d CrossRefPubMedGoogle Scholar
  297. 297.
    Lu W, Li Y, Li R et al (2016) Facile Synthesis of N-Doped Carbon Dots as a New Matrix for Detection of Hydroxy-Polycyclic Aromatic Hydrocarbons by Negative-Ion Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. ACS Appl Mater Interfaces 8:12976–12984.  https://doi.org/10.1021/acsami.6b01510 CrossRefPubMedGoogle Scholar
  298. 298.
    Ma R, Lu M, Ding L et al (2013) Surface-assisted laser desorption/ionization mass spectrometric detection of biomolecules by using functional single-walled carbon nanohorns as the matrix. Chem Eur J 19:102–108.  https://doi.org/10.1002/chem.201202838 CrossRefPubMedGoogle Scholar
  299. 299.
    Zhang B-T, Zheng X, Li H-F, Lin J-M (2013) Application of carbon-based nanomaterials in sample preparation: A review. Anal Chim Acta 784:1–17.  https://doi.org/10.1016/j.aca.2013.03.054 CrossRefPubMedGoogle Scholar
  300. 300.
    Dong X, Cheng J, Li J, Wang Y (2010) Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal Chem 82:6208–6214.  https://doi.org/10.1021/ac101022m CrossRefPubMedPubMedCentralGoogle Scholar
  301. 301.
    Abdelhamid HN, Khan MS, Wu H-F (2014) Graphene oxide as a nanocarrier for gramicidin (GOGD) for high antibacterial performance. RSC Adv 4:50035–50046.  https://doi.org/10.1039/C4RA07250B CrossRefGoogle Scholar
  302. 302.
    Tang LAL, Wang J, Loh KP (2010) Graphene-based SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer. J Am Chem Soc 132:10976–10977.  https://doi.org/10.1021/ja104017y CrossRefPubMedGoogle Scholar
  303. 303.
    Zhou X, Wei Y, He Q et al (2010) Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chem Commun (Camb) 46:6974–6976.  https://doi.org/10.1039/c0cc01681k CrossRefGoogle Scholar
  304. 304.
    Zhang J, Dong X, Cheng J et al (2011) Efficient analysis of non-polar environmental contaminants by MALDI-TOF MS with graphene as matrix. J Am Soc Mass Spectrom 22:1294–1298.  https://doi.org/10.1007/s13361-011-0143-7 CrossRefPubMedGoogle Scholar
  305. 305.
    Liu Y, Liu J, Yin P et al (2011) High throughput identification of components from traditional Chinese medicine herbs by utilizing graphene or graphene oxide as MALDI-TOF-MS matrix. J Mass Spectrom 46:804–815.  https://doi.org/10.1002/jms.1952 CrossRefPubMedGoogle Scholar
  306. 306.
    Abdelhamid HN, Wu H-F (2013) Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. J Mater Chem B 1:3950–3961.  https://doi.org/10.1039/c3tb20413h CrossRefGoogle Scholar
  307. 307.
    Shahnawaz Khan M, Abdelhamid HN, Wu H-F (2015) Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf B: Biointerfaces 127C:281–291.  https://doi.org/10.1016/j.colsurfb.2014.12.049 CrossRefGoogle Scholar
  308. 308.
    Wu B-S, Abdelhamid HN, Wu H-F (2014) Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Adv 4:3722.  https://doi.org/10.1039/c3ra43992e CrossRefGoogle Scholar
  309. 309.
    Michalak L, Fisher KJ, Alderdice DS et al (1994) C60-assisted laser desorption-ionization mass spectrometry. Org Mass Spectrom 29:512–515.  https://doi.org/10.1002/oms.1210290912 CrossRefGoogle Scholar
  310. 310.
    Hopwood FG, Michalak L, Alderdice DS et al (1994) C60-assisted laser desorption/ionization mass spectrometry in the analysis of phosphotungstic acid. Rapid Commun Mass Spectrom 8:881–885.  https://doi.org/10.1002/rcm.1290081105 CrossRefGoogle Scholar
  311. 311.
    Montsko G, Vaczy A, Maasz G et al (2009) Analysis of nonderivatized steroids by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using C70 fullerene as matrix. Anal Bioanal Chem 395:869–874.  https://doi.org/10.1007/s00216-009-3018-z CrossRefPubMedGoogle Scholar
  312. 312.
    Shiea J, Huang JP, Teng CF et al (2003) Use of a water-soluble fullerene derivative as precipitating reagent and matrix-assisted laser desorption/ionization matrix to selectively detect charged species in aqueous solutions. Anal Chem 75:3587–3595.  https://doi.org/10.1021/ac020750m CrossRefPubMedGoogle Scholar
  313. 313.
    Vallant RM, Szabo Z, Trojer L et al (2007) A new analytical material-enhanced laser desorption ionization (MELDI) based approach for the determination of low-mass serum constituents using fullerene derivatives for selective enrichment. J Proteome Res 6:44–53.  https://doi.org/10.1021/pr060347m CrossRefPubMedGoogle Scholar
  314. 314.
    Vallant RM, Szabo Z, Bachmann S et al (2007) Development and application of C60-fullerene bound silica for solid-phase extraction of biomolecules. Anal Chem 79:8144–8153.  https://doi.org/10.1021/ac0712392 CrossRefPubMedGoogle Scholar
  315. 315.
    Havel J, Soto-Guerrero J (2005) Matrix assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI) mass spectrometry for trace uranium determination: The use of C60-fullerene as a matrix. J Radioanal Nucl Chem 263:489–492.  https://doi.org/10.1007/s10967-005-0080-7 CrossRefGoogle Scholar
  316. 316.
    Böddi K, Takátsy A, Szabó S et al (2009) Use of fullerene-, octadecyl-, and triaconthyl silica for solid phase extraction of tryptic peptides obtained from unmodified and in vitro glycated human serum albumin and fibrinogen. J Sep Sci 32:295–308.  https://doi.org/10.1002/jssc.200800462 CrossRefPubMedGoogle Scholar
  317. 317.
    Deacon GB, Field LD, Fisher K et al (2014) Fullerene matrices in the MALDI-TOF mass spectroscopic characterisation of organometallic compounds. J Organomet Chem 751:482–492.  https://doi.org/10.1016/j.jorganchem.2013.10.025 CrossRefGoogle Scholar
  318. 318.
    Chen H, Qi D, Deng C et al (2009) Preparation of C60-functionalized magnetic silica microspheres for the enrichment of low-concentration peptides and proteins for MALDI-TOF MS analysis. Proteomics 9:380–387.  https://doi.org/10.1002/pmic.200800335 CrossRefGoogle Scholar
  319. 319.
    Sunner J, Dratz E, Chen YC (1995) Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal Chem 67:4335–4342.  https://doi.org/10.1021/ac00119a021 CrossRefPubMedGoogle Scholar
  320. 320.
    Chen Y-C, Shiea J, Sunner J (1998) Thin-layer chromatography–mass spectrometry using activated carbon, surface-assisted laser desorption/ionization. J Chromatogr A 826:77–86.  https://doi.org/10.1016/S0021-9673(98)00726-2 CrossRefPubMedGoogle Scholar
  321. 321.
    Kim J, Kang W (2000) Use of graphite plate for homogeneous sample preparation in matrix/surface-assisted laser desorption and ionization of polypropyleneglycol and polystyrene. Bull Kor Chem Soc 21:401–404Google Scholar
  322. 322.
    Lee G, Bae S-E, Huh S, Cha S (2015) Graphene oxide embedded sol–gel (GOSG) film as a SALDI MS substrate for robust metabolite fingerprinting. RSC Adv 5:56455–56459.  https://doi.org/10.1039/C5RA11497G CrossRefGoogle Scholar
  323. 323.
    Liu C-W, Chien M-W, Su C-Y et al (2012) Analysis of flavonoids by graphene-based surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst 137:5809–5816.  https://doi.org/10.1039/c2an36155h CrossRefPubMedGoogle Scholar
  324. 324.
    Lu M, Lai Y, Chen G, Cai Z (2011) Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. Anal Chem 83:3161–3169.  https://doi.org/10.1021/ac2002559 CrossRefPubMedGoogle Scholar
  325. 325.
    Lu M, Lai Y, Chen G, Cai Z (2011) Laser desorption/ionization on the layer of graphene nanoparticles coupled with mass spectrometry for characterization of polymers. Chem Commun 47:12807.  https://doi.org/10.1039/c1cc15592j CrossRefGoogle Scholar
  326. 326.
    Liu Q, Cheng M, Wang J, Jiang G (2015) Graphene oxide nanoribbons: Improved synthesis and application in maldi mass spectrometry. Chem A Eur J 21:5594–5599.  https://doi.org/10.1002/chem.201406280 CrossRefGoogle Scholar
  327. 327.
    Xu G, Liu S, Peng J et al (2015) Facile Synthesis of Gold@Graphitized Mesoporous Silica Nanocomposite and Its Surface-Assisted Laser Desorption/Ionization for Time-of-Flight Mass Spectroscopy. ACS Appl Mater Interfaces 7:2032–2038.  https://doi.org/10.1021/am507894y CrossRefPubMedGoogle Scholar
  328. 328.
    Huang X, Liu Q, Huang X et al (2017) Fluorographene as a Mass Spectrometry Probe for High-Throughput Identification and Screening of Emerging Chemical Contaminants in Complex Samples. Anal Chem 89:1307–1314.  https://doi.org/10.1021/acs.analchem.6b04167 CrossRefPubMedGoogle Scholar
  329. 329.
    Zhao H, Li Y, Wang J et al (2018) Dual-Ion-Mode MALDI MS Detection of Small Molecules with the O–P,N-Doped Carbon/Graphene Matrix. ACS Appl Mater Interfaces 10:37732–37742.  https://doi.org/10.1021/acsami.8b14643 CrossRefPubMedGoogle Scholar
  330. 330.
    Ashour RM, Abdelhamid HN, Abdel-Magied AF et al (2017) Rare Earth Ions Adsorption onto Graphene Oxide Nanosheets. Solvent Extr Ion Exch 35:91–103.  https://doi.org/10.1080/07366299.2017.1287509 CrossRefGoogle Scholar
  331. 331.
    Meng J, Shi C, Deng C (2011) Facile synthesis of water-soluble multi-wall carbon nanotubes and polyaniline composites and their application in detection of small metabolites by matrix assisted laser desorption/ionization mass spectrometry. Chem Commun 47:11017.  https://doi.org/10.1039/c1cc14319k CrossRefGoogle Scholar
  332. 332.
    Shi C, Deng C, Zhang X, Yang P (2013) Synthesis of Highly Water-Dispersible Polydopamine-Modified Multiwalled Carbon Nanotubes for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Analysis. ACS Appl Mater Interfaces 5:7770–7776.  https://doi.org/10.1021/am4024143 CrossRefPubMedGoogle Scholar
  333. 333.
    Kim Y-K, Min D-H (2012) Fabrication of alternating multilayer films of graphene oxide and carbon nanotube and its application in mechanistic study of laser desorption/ionization of small molecules. ACS Appl Mater Interfaces 4:2088–2095.  https://doi.org/10.1021/am300054z CrossRefPubMedGoogle Scholar
  334. 334.
    Bian J, Olesik SV (2017) Surface-assisted laser desorption/ionization time-of-flight mass spectrometry of small drug molecules and high molecular weight synthetic/biological polymers using electrospun composite nanofibers. Analyst 142:1125–1132.  https://doi.org/10.1039/C6AN02444K CrossRefPubMedGoogle Scholar
  335. 335.
    Wu Z, Khan M, Mao S et al (2018) Combination of nano-material enrichment and dead-end filtration for uniform and rapid sample preparation in matrix-assisted laser desorption/ionization mass spectrometry. Talanta 181:217–223.  https://doi.org/10.1016/j.talanta.2018.01.016 CrossRefPubMedGoogle Scholar
  336. 336.
    Lin Z, Wu J, Dong Y et al (2018) Nitrogen and Sulfur Co-doped Carbon-Dot-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Imaging for Profiling Bisphenol S Distribution in Mouse Tissues. Anal Chem 90:10872–10880.  https://doi.org/10.1021/acs.analchem.8b02362 CrossRefPubMedGoogle Scholar
  337. 337.
    Wu J-Y, Chen Y-C (2002) A novel approach of combining thin-layer chromatography with surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry. J Mass Spectrom 37:85–90.  https://doi.org/10.1002/jms.264 CrossRefPubMedGoogle Scholar
  338. 338.
    Tang HW, Ng KM, Lu W, Che CM (2009) Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: Desorption mechanism(s) and the design of SALDI substrates. Anal Chem 81:4720–4729.  https://doi.org/10.1021/ac8026367 CrossRefPubMedGoogle Scholar
  339. 339.
    Shi C, Meng J, Deng C (2012) Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS. Chem Commun 48:2418.  https://doi.org/10.1039/c2cc17696c CrossRefGoogle Scholar
  340. 340.
    He XM, Zhu GT, Yin J et al (2014) Electrospun polystyrene/oxidized carbon nanotubes film as both sorbent for thin film microextraction and matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Chromatogr A 1351:29–36.  https://doi.org/10.1016/j.chroma.2014.05.045 CrossRefPubMedGoogle Scholar
  341. 341.
    Zhao Y, Zhang L, Chu Z et al (2017) Ti 4+ -immobilized chitosan-coated magnetic graphene oxide for the highly selective enrichment of phosphopeptides. Anal Methods 9:443–449.  https://doi.org/10.1039/C6AY02905A CrossRefGoogle Scholar
  342. 342.
    Zhang L, Gan Y, Sun H et al (2017) Magnetic mesoporous carbon composites incorporating hydrophilic metallic nanoparticles for enrichment of phosphopeptides prior to their determination by MALDI-TOF mass spectrometry. Microchim Acta 184:547–555.  https://doi.org/10.1007/s00604-016-2046-6 CrossRefGoogle Scholar
  343. 343.
    Liu J, Liu Y, Gao M, Zhang X (2012) High throughput detection of tetracycline residues in milk using graphene or graphene oxide as MALDI-TOF MS matrix. J Am Soc Mass Spectrom 23:1424–1427.  https://doi.org/10.1007/s13361-012-0400-4 CrossRefPubMedGoogle Scholar
  344. 344.
    Huang X, Liu Q, Fu J et al (2016) Screening of Toxic Chemicals in a Single Drop of Human Whole Blood Using Ordered Mesoporous Carbon as a Mass Spectrometry Probe. Anal Chem 88:4107–4113.  https://doi.org/10.1021/acs.analchem.6b00444 CrossRefPubMedGoogle Scholar
  345. 345.
    Wang D, Huang X, Li J et al (2018) 3D printing of graphene-doped target for “matrix-free” laser desorption/ionization mass spectrometry. Chem Commun 54:2723–2726.  https://doi.org/10.1039/C7CC09649F CrossRefGoogle Scholar
  346. 346.
    Hussein KH, Abdelhamid HN, Zou X, Woo H-M (2019) Ultrasonicated graphene oxide enhances bone and skin wound regeneration. Mater Sci Eng C 94:484–492.  https://doi.org/10.1016/j.msec.2018.09.051 CrossRefGoogle Scholar
  347. 347.
    Hong YL, Seo TH, Jang H, Kim Y-K (2019) The effect of oxidative debris on the laser desorption/ionization efficiency of graphene oxide derivatives for mass spectrometric analysis of small molecules and synthetic polymers. Anal Sci.  https://doi.org/10.2116/analsci.19P205
  348. 348.
    Abdelhamid HN, Chen Z-Y, Wu H-F (2017) Surface tuning laser desorption/ionization mass spectrometry (STLDI-MS) for the analysis of small molecules using quantum dots. Anal Bioanal Chem 409:4943–4950.  https://doi.org/10.1007/s00216-017-0433-4 CrossRefPubMedGoogle Scholar
  349. 349.
    Chang HY, Huang MF, Hsu CL et al (2015) Analyses of functional polymer-modified nanoparticles for protein sensing by surface-assisted laser desorption/ionization mass spectrometry coupled with HgTe nanomatrices. Colloids Surf B: Biointerfaces 130:157–163.  https://doi.org/10.1016/j.colsurfb.2015.04.001 CrossRefPubMedGoogle Scholar
  350. 350.
    Bailes J, Vidal L, Ivanov DA, Soloviev M (2009) Quantum dots improve peptide detection in MALDI MS in a size dependent manner. J Nanobiotechnology 7:10.  https://doi.org/10.1186/1477-3155-7-10 CrossRefPubMedPubMedCentralGoogle Scholar
  351. 351.
    Abdelhamid HN, Wu H-F (2014) Monitoring metallofulfenamic–bovine serum albumin interactions: a novel method for metallodrug analysis. RSC Adv 4:53768–53776.  https://doi.org/10.1039/C4RA07638A CrossRefGoogle Scholar
  352. 352.
    Wu HF, Gopal J, Abdelhamid HN, Hasan N (2012) Quantum dot applications endowing novelty to analytical proteomics. Proteomics 12:2949–2961.  https://doi.org/10.1002/pmic.201200295 CrossRefPubMedGoogle Scholar
  353. 353.
    Chen Z-Y, Abdelhamid HN, Wu H-F (2016) Effect of surface capping of quantum dots (CdTe) on proteomics. Rapid Commun Mass Spectrom 30:1403–1412.  https://doi.org/10.1002/rcm.7575 CrossRefPubMedGoogle Scholar
  354. 354.
    Ke Y, Kailasa SK, Wu H-F, Chen Z-Y (2010) High resolution detection of high mass proteins up to 80,000 Da via multifunctional CdS quantum dots in laser desorption/ionization mass spectrometry. Talanta 83:178–184.  https://doi.org/10.1016/j.talanta.2010.09.003 CrossRefPubMedGoogle Scholar
  355. 355.
    Shrivas K, Kailasa SK, Wu HF (2009) Quantum dots laser desorption/ionization MS: Multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS. Proteomics 9:2656–2667.  https://doi.org/10.1002/pmic.200800772 CrossRefPubMedGoogle Scholar
  356. 356.
    Abdelhamid HN, Wu H-F (2015) Synthesis and characterization of quantum dots for application in laser soft desorption/ionization mass spectrometry to detect labile metal–drug interactions and their antibacterial activity. RSC Adv 5:76107–76115.  https://doi.org/10.1039/C5RA11301F CrossRefGoogle Scholar
  357. 357.
    Bibi A, Ju H (2016) Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis. J Mass Spectrom 51:291–297.  https://doi.org/10.1002/jms.3753 CrossRefPubMedGoogle Scholar
  358. 358.
    Nasser Abdelhamid H, Wu HF (2013) Furoic and mefenamic acids as new matrices for matrix assisted laser desorption/ionization-(MALDI)-mass spectrometry. Talanta 115:442–450.  https://doi.org/10.1016/j.talanta.2013.05.050 CrossRefGoogle Scholar
  359. 359.
    Liu C-W, Chien M-W, Chen G-F et al (2011) Quantum Dot Enhancement of Peptide Detection by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 83:6593–6600.  https://doi.org/10.1021/ac201016c CrossRefPubMedGoogle Scholar
  360. 360.
    Abdelhamid HN, El-Bery HM, Metwally AA et al (2019) Synthesis of CdS-modified chitosan quantum dots for the drug delivery of Sesamol. Carbohydr Polym 214:90–99.  https://doi.org/10.1016/j.carbpol.2019.03.024 CrossRefPubMedGoogle Scholar
  361. 361.
    Abdelhamid HN (2017) Lanthanide Metal-Organic Frameworks and Hierarchical Porous Zeolitic Imidazolate Frameworks: Synthesis, Properties, and Applications. PhD Thesis, Stockholm University, Faculty of Science,Google Scholar
  362. 362.
    Abdelhamid HN, Huang Z, El-Zohry AM et al (2017) A Fast and Scalable Approach for Synthesis of Hierarchical Porous Zeolitic Imidazolate Frameworks and One-Pot Encapsulation of Target Molecules. Inorg Chem 56:9139–9146.  https://doi.org/10.1021/acs.inorgchem.7b01191 CrossRefPubMedGoogle Scholar
  363. 363.
    Valencia L, Abdelhamid HN (2019) Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide. Carbohydr Polym.  https://doi.org/10.1016/j.carbpol.2019.03.011 CrossRefGoogle Scholar
  364. 364.
    Abdelhamid HN, Bermejo-Gómez A, Martín-Matute B, Zou X (2017) A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan. Microchim Acta 184:3363–3371.  https://doi.org/10.1007/s00604-017-2306-0 CrossRefGoogle Scholar
  365. 365.
    Yang Y, Shen K, Lin J et al (2016) A Zn-MOF constructed from electron-rich π-conjugated ligands with an interpenetrated graphene-like net as an efficient nitroaromatic sensor. RSC Adv 6:45475–45481.  https://doi.org/10.1039/C6RA00524A CrossRefGoogle Scholar
  366. 366.
    Yao Q, Bermejo Gómez A, Su J et al (2015) Series of Highly Stable Isoreticular Lanthanide Metal–Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties. Chem Mater 27:5332–5339.  https://doi.org/10.1021/acs.chemmater.5b01711 CrossRefGoogle Scholar
  367. 367.
    Zou X, Yao Q, Gómez AB et al (2016) A series of highly stable isoreticular lanthanide metal-organic frameworks with tunable luminescence properties solved by rotation electron diffraction and X-ray diffraction. Acta Crystallogr Sect A Found Adv 72:s136–s136.  https://doi.org/10.1107/S2053273316097977 CrossRefGoogle Scholar
  368. 368.
    Abdel-Magied AF, Abdelhamid HN, Ashour RM et al (2019) Hierarchical porous zeolitic imidazolate frameworks nanoparticles for efficient adsorption of rare-earth elements. Microporous Mesoporous Mater 278:175–184.  https://doi.org/10.1016/j.micromeso.2018.11.022 CrossRefGoogle Scholar
  369. 369.
    Emam HE, Abdelhamid HN, Abdelhameed RM (2018) Self-cleaned photoluminescent viscose fabric incorporated lanthanide-organic framework (Ln-MOF). Dyes Pigments 159:491–498.  https://doi.org/10.1016/j.dyepig.2018.07.026 CrossRefGoogle Scholar
  370. 370.
    Abdelhamid HN, Wilk-Kozubek M, El-Zohry AM et al (2019) Luminescence properties of a family of lanthanide metal-organic frameworks. Microporous Mesoporous Mater 279:400–406.  https://doi.org/10.1016/j.micromeso.2019.01.024 CrossRefGoogle Scholar
  371. 371.
    Abdelhamid H, El-Zohry A, Cong J et al (2019) Towards implementing hierarchical porous zeolitic imidazolate frameworks in dye-sensitized solar cells. R Soc Open Sci 6:190723.  https://doi.org/10.1098/rsos.190723 CrossRefPubMedPubMedCentralGoogle Scholar
  372. 372.
    Moghadam PZ, Li A, Wiggin SB et al (2017) Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chem Mater 29:2618–2625.  https://doi.org/10.1021/acs.chemmater.7b00441 CrossRefGoogle Scholar
  373. 373.
    Chen L, Ou J, Wang H et al (2016) Tailor-Made Stable Zr(IV)-Based Metal-Organic Frameworks for Laser Desorption/Ionization Mass Spectrometry Analysis of Small Molecules and Simultaneous Enrichment of Phosphopeptides. ACS Appl Mater Interfaces 8:20292–20300.  https://doi.org/10.1021/acsami.6b06225 CrossRefPubMedGoogle Scholar
  374. 374.
    Liu H-L, Chang Y-J, Fan T, Gu Z-Y (2016) Two-dimensional metal–organic framework nanosheets as a matrix for laser desorption/ionization of small molecules and monitoring enzymatic reactions at high salt concentrations. Chem Commun 52:12984–12987.  https://doi.org/10.1039/C6CC07371A CrossRefGoogle Scholar
  375. 375.
    Wang Y, Wang J, Gao M, Zhang X (2017) Functional dual hydrophilic dendrimer-modified metal-organic framework for the selective enrichment of N-glycopeptides. Proteomics 17:1700005.  https://doi.org/10.1002/pmic.201700005 CrossRefGoogle Scholar
  376. 376.
    Xie Y, Deng C, Li Y (2017) Designed synthesis of ultra-hydrophilic sulfo-functionalized metal-organic frameworks with a magnetic core for highly efficient enrichment of the N-linked glycopeptides. J Chromatogr A 1508:1–6CrossRefGoogle Scholar
  377. 377.
    Wei JP, Wang H, Luo T et al (2017) Enrichment of serum biomarkers by magnetic metal-organic framework composites. Anal Bioanal Chem 409:1895–1904.  https://doi.org/10.1007/s00216-016-0136-2 CrossRefPubMedGoogle Scholar
  378. 378.
    Fu C-P, Lirio S, Liu W-L et al (2015) A novel type of matrix for surface-assisted laser desorption–ionization mass spectrometric detection of biomolecules using metal-organic frameworks. Anal Chim Acta 888:103–109.  https://doi.org/10.1016/j.aca.2015.07.029 CrossRefPubMedGoogle Scholar
  379. 379.
    Zhang Y-W, Li Z, Zhao Q et al (2014) A facilely synthesized amino-functionalized metal–organic framework for highly specific and efficient enrichment of glycopeptides. Chem Commun 50:11504–11506.  https://doi.org/10.1039/C4CC05179C CrossRefGoogle Scholar
  380. 380.
    Wang J, Wang Y, Guo X et al (2018) Matrix assisted laser desorption/ionization time-of-flight mass spectrometric determination of benzo[a]pyrene using a MIL-101(Fe) matrix. Microchim Acta 185:175.  https://doi.org/10.1007/s00604-017-2627-z CrossRefGoogle Scholar
  381. 381.
    Zhai R, Yuan Y, Jiao F et al (2017) Facile synthesis of magnetic metal organic frameworks for highly efficient proteolytic digestion used in mass spectrometry-based proteomics. Anal Chim Acta 994:19–28.  https://doi.org/10.1016/j.aca.2017.08.048 CrossRefPubMedGoogle Scholar
  382. 382.
    Shih YH, Fu CP, Liu WL et al (2016) Nanoporous Carbons Derived from Metal-Organic Frameworks as Novel Matrices for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Small 12:2057–2066.  https://doi.org/10.1002/smll.201502817 CrossRefPubMedGoogle Scholar
  383. 383.
    Wang Y, Wang J, Gao M, Zhang X (2017) A novel carbon material with nanopores prepared using a metal–organic framework as precursor for highly selective enrichment of N-linked glycans. Anal Bioanal Chem 409:431–438.  https://doi.org/10.1007/s00216-016-9796-1 CrossRefPubMedGoogle Scholar
  384. 384.
    Huang J-C, Shih Y-H, Lirio S et al (2019) A simple approach to achieve a metastable metal oxide derived from carbonized metal–organic gels. Chem Commun 55:4475–4478.  https://doi.org/10.1039/C9CC00240E CrossRefGoogle Scholar
  385. 385.
    Zhao M, Chen T, Deng C (2016) Porous anatase TiO2 derived from a titanium metal–organic framework as a multifunctional phospho-oriented nanoreactor integrating accelerated digestion of proteins and in situ enrichment. RSC Adv 6:51670–51674.  https://doi.org/10.1039/C6RA03837A CrossRefGoogle Scholar
  386. 386.
    Xiao R, Pan Y, Li J et al (2019) Layer-by-layer assembled magnetic bimetallic metal-organic framework composite for global phosphopeptide enrichment. J Chromatogr A 1601:45–52.  https://doi.org/10.1016/j.chroma.2019.05.010 CrossRefPubMedGoogle Scholar
  387. 387.
    Zhao M, Deng C, Zhang X (2014) The design and synthesis of a hydrophilic core–shell–shell structured magnetic metal–organic framework as a novel immobilized metal ion affinity platform for phosphoproteome research. Chem Commun 50:6228–6231.  https://doi.org/10.1039/c4cc01038h CrossRefGoogle Scholar
  388. 388.
    Liu Q, Xie Y, Deng C, Li Y (2017) One-step synthesis of carboxyl-functionalized metal-organic framework with binary ligands for highly selective enrichment of N-linked glycopeptides. Talanta 175:477–482.  https://doi.org/10.1016/j.talanta.2017.07.067 CrossRefPubMedGoogle Scholar
  389. 389.
    Zhao M, Zhang X, Deng C (2015) Facile synthesis of hydrophilic magnetic graphene@metal-organic framework for highly selective enrichment of phosphopeptides. RSC Adv 5:35361–35364.  https://doi.org/10.1039/C5RA03464G CrossRefGoogle Scholar
  390. 390.
    Qi X, Chang C, Xu X et al (2016) Magnetization of 3-dimentional homochiral metal-organic frameworks for efficient and highly selective capture of phosphopeptides. J Chromatogr A 1468:49–54.  https://doi.org/10.1016/j.chroma.2016.09.046 CrossRefPubMedGoogle Scholar
  391. 391.
    Li D, Bie Z (2017) Metal–organic framework incorporated monolithic capillary for selective enrichment of phosphopeptides. RSC Adv 7:15894–15902.  https://doi.org/10.1039/C7RA00263G CrossRefGoogle Scholar
  392. 392.
    Li D, Yin D, Chen Y, Liu Z (2017) Coupling of metal-organic frameworks-containing monolithic capillary-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for efficient analysis of protein phosphorylation. J Chromatogr A 1498:56–63.  https://doi.org/10.1016/j.chroma.2016.10.054 CrossRefPubMedGoogle Scholar
  393. 393.
    Zhu X, Gu J, Yang J et al (2015) Zr-based metal–organic frameworks for specific and size-selective enrichment of phosphopeptides with simultaneous exclusion of proteins. J Mater Chem B 3:4242–4248.  https://doi.org/10.1039/C5TB00113G CrossRefGoogle Scholar
  394. 394.
    Xie Y, Deng C (2016) Highly efficient enrichment of phosphopeptides by a magnetic lanthanide metal-organic framework. Talanta 159:1–6.  https://doi.org/10.1016/j.talanta.2016.05.075 CrossRefPubMedGoogle Scholar
  395. 395.
    Messner CB, Mirza MR, Rainer M et al (2013) Selective enrichment of phosphopeptides by a metal–organic framework. Anal Methods 5:2379–2383.  https://doi.org/10.1039/c3ay40308d CrossRefGoogle Scholar
  396. 396.
    Xie Y, Deng C (2017) Designed synthesis of a “One for Two” hydrophilic magnetic amino-functionalized metal-organic framework for highly efficient enrichment of glycopeptides and phosphopeptides. Sci Rep 7:1162.  https://doi.org/10.1038/s41598-017-01341-y CrossRefPubMedPubMedCentralGoogle Scholar
  397. 397.
    Yang X, Xia Y (2016) Urea-modified metal-organic framework of type MIL-101(Cr) for the preconcentration of phosphorylated peptides. Microchim Acta 183:2235–2240.  https://doi.org/10.1007/s00604-016-1860-1 CrossRefGoogle Scholar
  398. 398.
    Rocío-Bautista P, Pacheco-Fernández I, Pasán J, Pino V (2016) Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? – A review. Anal Chim Acta 939:26–41CrossRefGoogle Scholar
  399. 399.
    Zhou J, Liang Y, He X et al (2017) Dual-Functionalized Magnetic Metal–Organic Framework for Highly Specific Enrichment of Phosphopeptides. ACS Sustain Chem Eng 5:11413–11421.  https://doi.org/10.1021/acssuschemeng.7b02521 CrossRefGoogle Scholar
  400. 400.
    Gu Z-Y, Chen Y-J, Jiang J-Q, Yan X-P (2011) Metal–organic frameworks for efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples. Chem Commun 47:4787.  https://doi.org/10.1039/c1cc10579e CrossRefGoogle Scholar
  401. 401.
    Peng J, Zhang H, Li X et al (2016) Dual-Metal Centered Zirconium-Organic Framework: A Metal-Affinity Probe for Highly Specific Interaction with Phosphopeptides. ACS Appl Mater Interfaces 8:35012–35020.  https://doi.org/10.1021/acsami.6b12630 CrossRefPubMedGoogle Scholar
  402. 402.
    Ma W, Xu S, Ai W et al (2019) A flexible and multifunctional metal–organic framework as a matrix for analysis of small molecules using laser desorption/ionization mass spectrometry. Chem Commun 55:6898–6901.  https://doi.org/10.1039/C9CC02611H CrossRefGoogle Scholar
  403. 403.
    Zhao Y, Zhang Q, Zhang L, Zhang W (2019) Preparation of mesoporous carbon material derived from Metal-Organic Frameworks and its application in selective capture of endogenous peptides from human serum. Talanta 200:443–449.  https://doi.org/10.1016/j.talanta.2019.02.097 CrossRefPubMedGoogle Scholar
  404. 404.
    Sultan S, Abdelhamid HN, Zou X, Mathew AP (2018) CelloMOF: Nanocellulose Enabled 3D Printing of Metal-Organic Frameworks. Adv Funct Mater 1805372.  https://doi.org/10.1002/adfm.201805372 CrossRefGoogle Scholar
  405. 405.
    Abdelhamid HN (2019) Surfactant assisted synthesis of hierarchical porous metal-organic frameworks nanosheets. Nanotechnology.  https://doi.org/10.1088/1361-6528/ab30f6 CrossRefGoogle Scholar
  406. 406.
    Zhen D, Gao C, Zhu B et al (2018) Preparation of Bi 0.15 Fe 0.15 TiO 2 Nanocomposites for the Highly Selective Enrichment of Phosphopeptides. Anal Chem 90:12414–12421.  https://doi.org/10.1021/acs.analchem.8b00606 CrossRefPubMedGoogle Scholar
  407. 407.
    Tan S, Wang J, Han Q et al (2018) A porous graphene sorbent coated with titanium(IV)-functionalized polydopamine for selective lab-in-syringe extraction of phosphoproteins and phosphopeptides. Microchim Acta 185:316.  https://doi.org/10.1007/s00604-018-2846-y CrossRefGoogle Scholar
  408. 408.
    BAE SW, Il KIMJ, CHOI I et al (2017) Zinc Ion-immobilized Magnetic Microspheres for Enrichment and Identification of Multi-phosphorylated Peptides by Mass Spectrometry. Anal Sci 33:1381–1386.  https://doi.org/10.2116/analsci.33.1381 CrossRefPubMedGoogle Scholar
  409. 409.
    Huang Y-L, Wang J, Jiang Y-H et al (2019) Development of amphiphile 4-armed PEO-based Ti4+ complex for highly selective enrichment of phosphopeptides. Talanta.  https://doi.org/10.1016/j.talanta.2019.06.008 CrossRefGoogle Scholar
  410. 410.
    Zhang L, Zhao Q, Liang Z et al (2012) Synthesis of adenosine functionalized metal immobilized magnetic nanoparticles for highly selective and sensitive enrichment of phosphopeptides. Chem Commun 48:6274.  https://doi.org/10.1039/c2cc31641b CrossRefGoogle Scholar
  411. 411.
    Jiang J, Sun X, She X et al (2018) Magnetic microspheres modified with Ti(IV) and Nb(V) for enrichment of phosphopeptides. Microchim Acta 185:309.  https://doi.org/10.1007/s00604-018-2837-z CrossRefGoogle Scholar
  412. 412.
    Yang D-S, Ding X-Y, Min H-P et al (2017) Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment. J Chromatogr A 1505:56–62.  https://doi.org/10.1016/j.chroma.2017.05.025 CrossRefPubMedGoogle Scholar
  413. 413.
    Han G, Zeng Q, Jiang Z et al (2017) Simple preparation of magnetic metal-organic frameworks composite as a “bait” for phosphoproteome research. Talanta 171:283–290.  https://doi.org/10.1016/j.talanta.2017.03.106 CrossRefPubMedGoogle Scholar
  414. 414.
    Yang S-S, Chang Y-J, Zhang H et al (2018) Enrichment of Phosphorylated Peptides with Metal–Organic Framework Nanosheets for Serum Profiling of Diabetes and Phosphoproteomics Analysis. Anal Chem 90:13796–13805.  https://doi.org/10.1021/acs.analchem.8b04417 CrossRefPubMedGoogle Scholar
  415. 415.
    Wu HY, Unnikrishnan B, Huang CC (2014) Membrane-based detection of lead ions in seawater, urine and drinking straws through laser desorption/ionization. Sensors Actuators B Chem 203:880–886.  https://doi.org/10.1016/j.snb.2014.06.140 CrossRefGoogle Scholar
  416. 416.
    Ren H, Chen W, Wang H et al (2019) Quantitative analysis of free fatty acids in gout by disposable paper-array plate based MALDI MS. Anal Biochem 579:38–43.  https://doi.org/10.1016/j.ab.2019.05.013 CrossRefPubMedGoogle Scholar
  417. 417.
    Knochenmuss R (2013) MALDI and Related Methods: A Solved Problem or Still a Mystery? Mass Spectrom (Tokyo, Japan) 2:S0006.  https://doi.org/10.5702/massspectrometry.S0006 CrossRefGoogle Scholar
  418. 418.
    Lu I-C, Lee C, Lee Y-T, Ni C-K (2015) Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization. Annu Rev Anal Chem 8:21–39.  https://doi.org/10.1146/annurev-anchem-071114-040315 CrossRefGoogle Scholar
  419. 419.
    Chu KY, Lee S, Tsai M-T et al (2014) Thermal Proton Transfer Reactions in Ultraviolet Matrix-Assisted Laser Desorption/Ionization. J Am Soc Mass Spectrom 25:310–318.  https://doi.org/10.1007/s13361-013-0792-9 CrossRefPubMedGoogle Scholar
  420. 420.
    Bae YJ, Kim MS (2015) A Thermal Mechanism of Ion Formation in MALDI. Annu Rev Anal Chem 8:41–60.  https://doi.org/10.1146/annurev-anchem-081413-024102 CrossRefGoogle Scholar
  421. 421.
    Karas M, Glückmann M, Schäfer J (2000) Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J Mass Spectrom 35:1–12.  https://doi.org/10.1002/(SICI)1096-9888(200001)35:1<1::AID-JMS904>3.0.CO;2-0 CrossRefPubMedGoogle Scholar
  422. 422.
    Niu S, Zhang W, Chait BT (1998) Direct comparison of infrared and ultraviolet wavelength matrix-assisted laser desorption/ionization mass spectrometry of proteins. J Am Soc Mass Spectrom 9:1–7.  https://doi.org/10.1016/S1044-0305(97)00236-5 CrossRefPubMedGoogle Scholar
  423. 423.
    Trimpin S, Inutan ED (2013) Matrix Assisted Ionization in Vacuum, a Sensitive and Widely Applicable Ionization Method for Mass Spectrometry. J Am Soc Mass Spectrom 24:722–732.  https://doi.org/10.1007/s13361-012-0571-z CrossRefPubMedGoogle Scholar
  424. 424.
    Li Y, Cao X, Zhan L et al (2018) Hot electron transfer promotes ion production in plasmonic metal nanostructure assisted laser desorption ionization mass spectrometry. Chem Commun 54:10905–10908.  https://doi.org/10.1039/C8CC05793A CrossRefGoogle Scholar
  425. 425.
    Knochenmuss R (2014) MALDI mechanisms: wavelength and matrix dependence of the coupled photophysical and chemical dynamics model. Analyst 139:147–156.  https://doi.org/10.1039/C3AN01446K CrossRefPubMedGoogle Scholar
  426. 426.
    Yonezawa T, Kawasaki H, Tarui A et al (2009) Detailed Investigation on the Possibility of Nanoparticles of Various Metal Elements for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Sci 25:339–346.  https://doi.org/10.2116/analsci.25.339 CrossRefPubMedGoogle Scholar
  427. 427.
    Ng K-M, Chau S-L, Tang H-W et al (2015) Ion-Desorption Efficiency and Internal-Energy Transfer in Surface-Assisted Laser Desorption/Ionization: More Implication(s) for the Thermal-Driven and Phase-Transition-Driven Desorption Process. J Phys Chem C 119:23708–23720.  https://doi.org/10.1021/acs.jpcc.5b05957 CrossRefGoogle Scholar
  428. 428.
    Lai SK-M, Tang H-W, Lau K-C, Ng K-M (2016) Nanosecond UV Laser Ablation of Gold Nanoparticles: Enhancement of Ion Desorption by Thermal-Driven Desorption, Vaporization, or Phase Explosion. J Phys Chem C 120:20368–20377.  https://doi.org/10.1021/acs.jpcc.6b06261 CrossRefGoogle Scholar
  429. 429.
    Kurita M, Arakawa R, Kawasaki H (2016) Silver nanoparticle functionalized glass fibers for combined surface-enhanced Raman scattering spectroscopy (SERS)/surface-assisted laser desorption/ionization (SALDI) mass spectrometry via plasmonic/thermal hot spots. Analyst 111:3669–3712.  https://doi.org/10.1039/C6AN00511J CrossRefGoogle Scholar
  430. 430.
    Stolee JA, Walker BN, Zorba V et al (2012) Laser–nanostructure interactions for ion production. Phys Chem Chem Phys 14:8453.  https://doi.org/10.1039/c2cp00038e CrossRefPubMedGoogle Scholar
  431. 431.
    Cheng YH, Zhang Y, Chau SL et al (2016) Enhancement of Image Contrast, Stability, and SALDI-MS Detection Sensitivity for Latent Fingerprint Analysis by Tuning the Composition of Silver-Gold Nanoalloys. ACS Appl Mater Interfaces 8:29668–29675.  https://doi.org/10.1021/acsami.6b09668 CrossRefPubMedGoogle Scholar
  432. 432.
    Popović I, Milovanović D, Miletić J et al (2016) Dependence of the quality of SALDI TOF MS analysis on the TiO2 nanocrystals’ size and shape. Opt Quant Electron 48:1–6.  https://doi.org/10.1007/s11082-016-0413-5 CrossRefGoogle Scholar
  433. 433.
    Kim YK, Min DH (2015) The structural influence of graphene oxide on its fragmentation during laser desorption/ionization mass spectrometry for efficient small-molecule analysis. Chem Eur J 21:7217–7223.  https://doi.org/10.1002/chem.201404067 CrossRefPubMedGoogle Scholar
  434. 434.
    Taira S, Sahashi Y, Shimma S et al (2011) Nanotrap and mass analysis of aromatic molecules by phenyl group-modified nanoparticle. Anal Chem 83:1370–1374.  https://doi.org/10.1021/ac102741g CrossRefPubMedGoogle Scholar
  435. 435.
    Amendola V, Litti L, Meneghetti M (2013) LDI-MS assisted by chemical-free gold nanoparticles: Enhanced sensitivity and reduced background in the low-mass region. Anal Chem 85:11747–11754.  https://doi.org/10.1021/ac401662r CrossRefPubMedGoogle Scholar
  436. 436.
    Silina YE, Koch M, Volmer DA (2015) Impact of analyte ablation and surface acidity of Pd nanoparticles on efficiency of surface-assisted laser desorption/ionization-mass spectrometry. Int J Mass Spectrom 387:3701–3707.  https://doi.org/10.1016/j.ijms.2015.06.009 CrossRefGoogle Scholar
  437. 437.
    Li Y, Luo P, Cao X et al (2019) Enhancing surface-assisted laser desorption ionization mass spectrometry performance by integrating plasmonic hot-electron transfer effect through surface modification. Chem Commun 55:5769–5772.  https://doi.org/10.1039/C9CC02541C CrossRefGoogle Scholar
  438. 438.
    Antone AJ, Liang Q, Sherwood JA et al (2019) Surface Effects of Iron Oxide Nanoparticles on the MALDI In-Source Decay Analysis of Glycans and Peptides. ACS Appl Nano Mater acsanm.9b00988.  https://doi.org/10.1021/acsanm.9b00988 CrossRefGoogle Scholar
  439. 439.
    Huang X, Liu Q, Jiang G (2019) Tuning the performance of graphene as a dual-ion-mode MALDI matrix by chemical functionalization and sample incubation. Talanta 199:532–540.  https://doi.org/10.1016/j.talanta.2019.03.010 CrossRefPubMedGoogle Scholar
  440. 440.
    Law KP (2010) Surface-assisted laser desorption/ionization mass spectrometry on nanostructured silicon substrates prepared by iodine-assisted etching. Int J Mass Spectrom 290:47–59.  https://doi.org/10.1016/j.ijms.2009.12.003 CrossRefGoogle Scholar
  441. 441.
    Duan J, Linman MJ, Chen C-Y, Cheng QJ (2009) CHCA-modified Au nanoparticles for laser desorption ionization mass spectrometric analysis of peptides. J Am Soc Mass Spectrom 20:1530–1539.  https://doi.org/10.1016/j.jasms.2009.04.009 CrossRefPubMedGoogle Scholar
  442. 442.
    Kolářová L, Kučera L, Vaňhara P et al (2015) Use of flower-like gold nanoparticles in time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 29:1585–1595.  https://doi.org/10.1002/rcm.7265 CrossRefPubMedGoogle Scholar
  443. 443.
    Tarui A, Kawasaki H, Taiko T et al (2009) Gold-nanoparticle-supported silicon plate with polymer micelles for surface-assisted laser desorption/ionization mass spectrometry of peptides. J Nanosci Nanotechnol 9:159–164.  https://doi.org/10.1166/jnn.2009.J046 CrossRefPubMedGoogle Scholar
  444. 444.
    Nordström A, Apon JV, Uritboonthai W et al (2006) Surfactant-enhanced desorption/ionization on silicon mass spectrometry. Anal Chem 78:272–278.  https://doi.org/10.1021/ac051398q CrossRefPubMedGoogle Scholar
  445. 445.
    Marsico ALM, Duncan B, Landis RF et al (2017) Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Biomolecules Using Gold Nanoparticles, Matrix, and the Coffee Ring Effect. Anal Chem 89:3009–3014.  https://doi.org/10.1021/acs.analchem.6b04538 CrossRefPubMedGoogle Scholar
  446. 446.
    Kim Y-K, Min D-H (2014) Mechanistic Study of Laser Desorption/Ionization of Small Molecules on Graphene Oxide Multilayer Films. Langmuir 30:12675–12683.  https://doi.org/10.1021/la5027653 CrossRefPubMedGoogle Scholar
  447. 447.
    Kim Y-K, Na H-K, Kwack S-J et al (2011) Synergistic Effect of Graphene Oxide/MWCNT Films in Laser Desorption/Ionization Mass Spectrometry of Small Molecules and Tissue Imaging. ACS Nano 5:4550–4561.  https://doi.org/10.1021/nn200245v CrossRefPubMedGoogle Scholar
  448. 448.
    Szabo Z, Vallant RM, Takátsy A et al (2010) Laser desorption/ionization mass spectrometric analysis of small molecules using fullerene-derivatized silica as energy-absorbing material. J Mass Spectrom 45:545–552.  https://doi.org/10.1002/jms.1740 CrossRefPubMedGoogle Scholar
  449. 449.
    Silina YE, Koch M, Volmer DA (2014) The role of physical and chemical properties of Pd nanostructured materials immobilized on inorganic carriers on ion formation in atmospheric pressure laser desorption/ionization mass spectrometry. J Mass Spectrom 49:468–480.  https://doi.org/10.1002/jms.3362 CrossRefPubMedGoogle Scholar
  450. 450.
    Colaianni L, Kung SC, Taggart DK et al (2014) Reduction of spectral interferences using ultraclean gold nanowire arrays in the LDI-MS analysis of a model peptide ABC Highlights: Authored by Rising Stars and Top Experts. Anal Bioanal Chem 406:4571–4583.  https://doi.org/10.1007/s00216-014-7876-7 CrossRefPubMedGoogle Scholar
  451. 451.
    Silina YE, Herbeck-Engel P, Koch M (2017) A study of enhanced ion formation from metal-semiconductor complexes in atmospheric pressure laser desorption/ionization mass spectrometry. J Mass Spectrom 52:43–53.  https://doi.org/10.1002/jms.3898 CrossRefPubMedGoogle Scholar
  452. 452.
    Chu H-W, Unnikrishnan B, Anand A et al (2018) Nanoparticle-based laser desorption/ionization mass spectrometric analysis of drugs and metabolites. J Food Drug Anal 26:1215–1228.  https://doi.org/10.1016/j.jfda.2018.07.001 CrossRefPubMedGoogle Scholar
  453. 453.
    Teng F, Zhu Q, Wang Y et al (2018) Enhancing reproducibility of SALDI MS detection by concentrating analytes within laser spot. Talanta 179:583–587.  https://doi.org/10.1016/j.talanta.2017.11.056 CrossRefPubMedGoogle Scholar
  454. 454.
    Abdelhamid HN, Wu H-F (2018) Selective biosensing of Staphylococcus aureus using chitosan quantum dots. Spectrochim Acta A Mol Biomol Spectrosc 188.  https://doi.org/10.1016/j.saa.2017.06.047 CrossRefGoogle Scholar
  455. 455.
    Abdelhamid HN, Wu H-F (2015) Synthesis and multifunctional applications of quantum nanobeads for label-free and selective metal chemosensing. RSC Adv 5:50494–50504.  https://doi.org/10.1039/C5RA07069D CrossRefGoogle Scholar
  456. 456.
    Coffinier Y, Kurylo I, Drobecq H et al (2014) Decoration of silicon nanostructures with copper particles for simultaneous selective capture and mass spectrometry detection of His-tagged model peptide. Analyst 139:5155–5163.  https://doi.org/10.1039/C4AN01056F CrossRefPubMedGoogle Scholar
  457. 457.
    Manikandan M, Nasser Abdelhamid H, Talib A, Wu H-F (2014) Facile synthesis of gold nanohexagons on graphene templates in Raman spectroscopy for biosensing cancer and cancer stem cells. Biosens Bioelectron 55:180–186.  https://doi.org/10.1016/j.bios.2013.11.037 CrossRefPubMedGoogle Scholar
  458. 458.
    Abdelhamid HN, Wu H-F (2013) Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J Mater Chem B 1:6094–6106.  https://doi.org/10.1039/c3tb21020k CrossRefGoogle Scholar
  459. 459.
    Abdelhamid HN (2016) Nanoparticles as Pharmaceutical Agents. MJ Anes 1:003–003Google Scholar
  460. 460.
    Kim M-J, Yun TG, Noh J-Y et al (2019) Synergistic Effect of the Heterostructure of Au Nanoislands on TiO2 Nanowires for Efficient Ionization in Laser Desorption/Ionization Mass Spectrometry. ACS Appl Mater Interfaces 11:20509–20520.  https://doi.org/10.1021/acsami.9b03386 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advanced Multifunctional Materials Laboratory, Department of ChemistryAssiut UniversityAssiutEgypt

Personalised recommendations