Advertisement

Microchimica Acta

, 186:660 | Cite as

Ultrafine Fe3C nanoparticles embedded in N-doped graphitic carbon sheets for simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine

  • Yao Chen
  • Xiao-Fang Zhang
  • Ai-Jun Wang
  • Qian-Li Zhang
  • Hong HuangEmail author
  • Jiu-Ju FengEmail author
Original Paper
  • 183 Downloads

Abstract

A pyrolytic method is described for preparation of ultrafine Fe3C nanoparticles incorporated into N-doped graphitic carbon nanosheets (Fe3C@NGCSs). Iron phthalocyanine and graphitic carbon nitride (g-C3N4) are used as starting materials. The hybrid nanocomposite was placed on a glassy carbon electrode (GCE) and then applied to simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and xanthine (XA). Figures of merits are as follows: for AA, the linear response range covers the 54.0–5491.0 μM range, the lower detection limit is 16.7 μM, and the best working voltage (vs. the saturated calomel electrode (SCE)) is 0.05 V. The respective data for DA are 1.2–120.8 μM, 0.34 μM and 0.19 V (vs. SCE). For UA, the respective data are 4.8–263.0 μM, 1.4 μM and 0.32 V (vs. SCE), and for XA the data are 4.8–361.0 μM, 1.5 μM and 0.71 V (vs. SCE). The method was successfully applied to their simultaneous determination in spiked serum samples.

Graphical abstract

Ultrafine Fe3C nanoparticles embedded in N-doped graphitic carbon sheets for simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine.

Keywords

Triferrous carbide nanoparticles Graphitic carbon nitride Electrochemical detection Biological small molecule 

Notes

Acknowledgements

This work was financially supported by Zhejiang Public Welfare Technology Application Research Project (LGG19B050001 and LGG18E010001) and the National Natural Science Foundation of China (21475118).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2019_3769_MOESM1_ESM.doc (4.8 mb)
ESM 1 (DOC 4925 kb)

References

  1. 1.
    Yue Y, Hu GZ, Zheng MB, Guo Y, Cao JM, Shao SJ (2012) A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid. Carbon 50(1):107–114CrossRefGoogle Scholar
  2. 2.
    Wang HY, Hui QS, Xu LX, Jiang JG, Sun Y (2003) Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent. Anal Chim Acta 497(1):93–99CrossRefGoogle Scholar
  3. 3.
    Kalimuthu P, John SA (2010) Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Talanta 80(5):1686–1691CrossRefGoogle Scholar
  4. 4.
    Caussé E, Pradelles A, Dirat B, Negre-Salvayre A, Salvayre R, Couderc F (2007) Simultaneous determination of allantoin, hypoxanthine, xanthine, and uric acid in serum/plasma by CE. Electrophoresis 28(3):381–387CrossRefGoogle Scholar
  5. 5.
    Jukk K, Kozlova J, Ritslaid P, Sammelselg V, Alexeyeva N, Tammeveski K (2013) Sputter-deposited Pt nanoparticle/multi-walled carbon nanotube composite catalyst for oxygen reduction reaction. J Electroanal Chem 708:31–38CrossRefGoogle Scholar
  6. 6.
    Zhou SH, Shi HY, Feng X, Xue KW, Song WB (2013) Design of templated nanoporous carbon electrode materials with substantial high specific surface area for simultaneous determination of biomolecules. Biosens Bioelectron 42:163–169CrossRefGoogle Scholar
  7. 7.
    Erikson H, Sarapuu A, Kozlova J, Matisen L, Sammelselg V, Tammeveski K (2015) Oxygen electroreduction on electrodeposited PdAu nanoalloys. Electrocatalysis 6(1):77–85CrossRefGoogle Scholar
  8. 8.
    Liu RL, Wu DQ, Feng XL, Müllen K (2010) Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew Chem Int Ed 122(14):2619–2623CrossRefGoogle Scholar
  9. 9.
    Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786CrossRefGoogle Scholar
  10. 10.
    Raj CR, Samanta A, Noh SH, Mondal S, Okajima T, Ohsaka T (2016) Emerging new generation electrocatalysts for the oxygen reduction reaction. J Mater Chem A 4(29):11156–11178CrossRefGoogle Scholar
  11. 11.
    Li SJ, He JZ, Zhang MJ, Zhang RX, Lv XL, Li SH, Pang H (2013) Electrochemical detection of dopamine using water-soluble sulfonated graphene. Electrochim Acta 102:58–65Google Scholar
  12. 12.
    Li CQ, He CS, Sun FZ, Wang MC, Wang JH, Lin YQ (2018) Incorporation of Fe3C and pyridinic N active sites with a moderate N/C ratio in Fe-N mesoporous carbon materials for enhanced oxygen reduction reaction activity. ACS Appl Nano Mater 1(4):1801–1810CrossRefGoogle Scholar
  13. 13.
    Wei J, Liang Y, Hu YX, Kong B, Simon GP, Zhang J, Jiang SP, Wang HT (2016) A versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction. Angew Chem Int Ed 55(4):1355–1359CrossRefGoogle Scholar
  14. 14.
    Xu K, Lao SJ, Qin HY, Liu BH, Li ZP (2010) A study of the direct dimethyl ether fuel cell using alkaline anolyte. J Power Sources 195(17):5606–5609CrossRefGoogle Scholar
  15. 15.
    Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17):10397–10401CrossRefGoogle Scholar
  16. 16.
    Chen Y, Yuan PX, Wang AJ, Luo X, Xue Y, Zhang L, Feng JJ (2019) A novel electrochemical immunosensor for highly sensitive detection of prostate-specific antigen using 3D open-structured PtCu nanoframes for signal amplification. Biosens Bioelectron 126:187–192Google Scholar
  17. 17.
    Tang F, Lei HT, Wang SJ, Wang HX, Jin ZX (2017) A novel Fe-N-C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes. Nanoscale 9(44):17364–17370CrossRefGoogle Scholar
  18. 18.
    Zhao PP, Xu W, Hua X, Luo W, Chen SL, Cheng GZ (2016) Facile synthesis of a N-doped Fe3C@CNT/porous carbon hybrid for an advanced oxygen reduction and water oxidation electrocatalyst. J Phys Chem C 120(20):11006–11013CrossRefGoogle Scholar
  19. 19.
    Cao T, Wang DS, Zhang JT, Cao CB, Li YD (2015) Bamboo-like nitrogen-doped carbon nanotubes with co nanoparticles encapsulated at the tips: uniform and large-scale synthesis and high-performance electrocatalysts for oxygen reduction. Chem Eur J 21(40):14022–14029CrossRefGoogle Scholar
  20. 20.
    Niu H-J, Zhang L, Feng JJ, Zhang QL, Huang H, Wang AJ (2019) Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction. J Colloid Interface Sci 552:744–751Google Scholar
  21. 21.
    Wen ZH, Ci SQ, Zhang F, Feng XL, Cui SM, Mao S, Luo SL, He Z, Chen JH (2012) Nitrogen-enriched core-shell structured Fe/Fe3C-C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv Mater 24(11):1399–1404CrossRefGoogle Scholar
  22. 22.
    Zuo Q, Zhao PP, Luo W, Cheng GZ (2016) Hierarchically porous Fe-N-C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction. Nanoscale 8(29):14271–14277CrossRefGoogle Scholar
  23. 23.
    Yang ZK, Zhao ZW, Liang K, Zhou X, Shen CC, Liu YN, Wang X, Xu AW (2016) Synthesis of nanoporous structured iron carbide/Fe-N-carbon composites for efficient oxygen reduction reaction in Zn-air batteries. J Mater Chem A 4(48):19037–19044CrossRefGoogle Scholar
  24. 24.
    Ren H, Wang Y, Yang Y, Tang X, Peng YQ, Peng HQ, Xiao L, Lu JT, Abruña HD, Zhuang L (2017) Fe/N/C nanotubes with atomic Fe sites: a highly active cathode catalyst for alkaline polymer electrolyte fuel cells. ACS Catal 7(10):6485–6492CrossRefGoogle Scholar
  25. 25.
    Abdelwahab AA, Shim Y-B (2015) Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded au nanoclusters. Sensors Actuators B Chem 221:659–665CrossRefGoogle Scholar
  26. 26.
    Wang Y, Tong LL (2010) Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. Sensors Actuators B Chem 150(1):43–49CrossRefGoogle Scholar
  27. 27.
    Anithaa AC, Asokan K, Sekar C (2017) Voltammetric determination of epinephrine and xanthine based on sodium dodecyl sulphate assisted tungsten trioxide nanoparticles. Electrochim Acta 237:44–53CrossRefGoogle Scholar
  28. 28.
    Alipour E, Majidi MR, Saadatirad A, S m G, Alizadeh AM (2013) Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochim Acta 91:36–42CrossRefGoogle Scholar
  29. 29.
    Sheng ZH, Zheng XQ, Xu JY, Bao WJ, Wang FB, Xia XH (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34(1):125–131CrossRefGoogle Scholar
  30. 30.
    Fu L, Zheng YH, Wang AW, Cai W, Lin HT (2015) Sensitive determination of quinoline yellow using poly (diallyldimethylammonium chloride) functionalized reduced graphene oxide modified grassy carbon electrode. Food Chem 181:127–132CrossRefGoogle Scholar
  31. 31.
    Chen LX, Zheng JN, Wang AJ, Wu LJ, Chen JR, Feng JJ (2015) Facile synthesis of porous bimetallic alloyed PdAg nanoflowers supported on reduced graphene oxide for simultaneous detection of ascorbic acid, dopamine, and uric acid. Analyst 140(9):3183–3192CrossRefGoogle Scholar
  32. 32.
    Saqib M, Lou B, Halawa MI, Kitte SA, Liu Z, Xu G (2017) Chemiluminescence of lucigenin–Allantoin and its application for the detection of Allantoin. Anal Chem 89(3):1863–1869CrossRefGoogle Scholar
  33. 33.
    Wei QL, Zhang GX, Yang XH, Chenitz R, Banham D, Yang LJ, Ye SY, Knights S, Sun SH (2017) 3D porous Fe/N/C spherical nanostructures as high-performance electrocatalysts for oxygen reduction in both alkaline and acidic media. ACS Appl Mater Interfaces 9(42):36944–36954CrossRefGoogle Scholar
  34. 34.
    Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028):443–447CrossRefGoogle Scholar
  35. 35.
    Hu EL, Ning JQ, He B, Li ZP, Zheng CC, Zhong YJ, Zhang ZY, Hu Y (2017) Unusual formation of tetragonal microstructures from nitrogen-doped carbon nanocapsules with cobalt nanocores as a bi-functional oxygen electrocatalyst. J Mater Chem A 5(5):2271–2279CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal UniversityJinhuaChina
  2. 2.School of Chemistry and Biological EngineeringSuzhou University of Science and TechnologySuzhouChina
  3. 3.College of Biological, Chemical Sciences and EngineeringJiaxing UniversityJiaxingChina

Personalised recommendations