Advertisement

Microchimica Acta

, 186:675 | Cite as

One-step synthesis of N-doped carbon dots, and their applications in curcumin sensing, fluorescent inks, and super-resolution nanoscopy

  • Lingli Bu
  • Tao Luo
  • Huanjun Peng
  • Ling Li
  • Dengying Long
  • Jingdong PengEmail author
  • Jing HuangEmail author
Original Paper

Abstract

Nitrogen-doped carbon dots (N-CDs) with fluorescence excitation/emission maxima at 365/450 nm were prepared by a one-step hydrothermal approach. The dots possess remarkable photostability, fluorescence blinking and good biocompatibility, and this favors utilization in stochastic optical reconstruction microscopy (STORM). A spatial resolution down to ~60 nm was achieved when imaging HeLa cells using 647-nm laser excitation. This opens new possibilities for various super-resolution techniques based on stochastic optical switching. The remarkable optical properties of the N-CDs also enable them to be applied as invisible security ink for use in patterning, information storage and anti-counterfeiting. Further, it is found that the fluorescence of the N-CDs can be quenched by curcumin with high efficiency due to a combination of inner filter effect and static quenching. Based on this, a fluorometric assay with a detection limit of 21 ng mL−1 was developed for the determination of curcumin.

Graphical abstract

Schematic representation of the applications of N-doped carbon dots (N-CDs). Curcumin quenches the fluorescence of N-CDs with high efficiency. The remarkable optical properties of the N-CDs enable them to be applied in fluorescent ink, cell imaging and stochastic optical reconstruction microscopy (STORM).

Keywords

Carbon dots Blinking Super-resolution imaging Fluorescent ink Cell imaging Fluorescence detection Curcumin 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21708007 and No. 21277110) and Natural Science Foundation of Hunan Province (No. 2018JJ3030). The authors would also like to thank Mr. Zhou Chunyuan for assistance in super-resolution microscopy data.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Ethical approval

All procedures performed in our studies were in accordance with the guidelines of the National Institute of Health, China, and approved by the Institutional Ethical Committee (IEC) of Hunan University. We also obtained informed consent for any experimentation with human urine samples.

Supplementary material

604_2019_3762_MOESM1_ESM.docx (468 kb)
ESM 1 (DOCX 467 kb)

References

  1. 1.
    Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikroskop Anat 9(1):413–418.  https://doi.org/10.1007/bf02956173 CrossRefGoogle Scholar
  2. 2.
    Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Bio 18(11):685–701.  https://doi.org/10.1038/nrm.2017.71 CrossRefGoogle Scholar
  3. 3.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645.  https://doi.org/10.1126/science.1127344 CrossRefPubMedGoogle Scholar
  4. 4.
    Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753.  https://doi.org/10.1126/science.1146598 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang Y, Fruhwirth G, Cai E, Ng T, Selvin PR (2013) 3D super-resolution imaging with blinking quantum dots. Nano Lett 13(11):5233–5241.  https://doi.org/10.1021/nl4026665 CrossRefPubMedGoogle Scholar
  6. 6.
    Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877.  https://doi.org/10.1126/science.1074952 CrossRefGoogle Scholar
  7. 7.
    van de Linde S, Krstić I, Prisner T, Doose S, Heilemann M, Sauer M (2011) Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. Photochem Photobiol Sci 10(4):499–506.  https://doi.org/10.1039/c0pp00317d CrossRefPubMedGoogle Scholar
  8. 8.
    Reineck P, Francis A, Orth A, Lau DWM, Nixon-Luke RDV, Rastogi ID, Razali WAW, Cordina NM, Parker LM, Sreenivasan VKA (2016) Brightness and Photostability of emerging red and near-IR fluorescent nanomaterials for bioimaging. Adv Opt Mater 4(10):1549–1557.  https://doi.org/10.1002/adom.201600212 CrossRefGoogle Scholar
  9. 9.
    Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737.  https://doi.org/10.1021/ja040082h CrossRefPubMedGoogle Scholar
  10. 10.
    Hu C, Li M, Qiu J, Sun YP (2019) Design and fabrication of carbon dots for energy conversion and storage. Chem Soc Rev 48(8):2315–2337.  https://doi.org/10.1039/c8cs00750k CrossRefPubMedGoogle Scholar
  11. 11.
    Wang Y, Xia Y (2019) Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review. Microchim Acta 186(1):50–75.  https://doi.org/10.1007/s00604-018-3110-1 CrossRefGoogle Scholar
  12. 12.
    Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43(20):7067–7098.  https://doi.org/10.1039/c4cs00141a CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, Qu M (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184(2):343–368.  https://doi.org/10.1007/s00604-016-2043-9 CrossRefGoogle Scholar
  14. 14.
    Park Y, Yoo J, Lim B, Kwon W, Rhee SW (2016) Improving the functionality of carbon nanodots: doping and surface functionalization. J Mater Chem A 4(30):11582–11603.  https://doi.org/10.1039/c6ta04813g CrossRefGoogle Scholar
  15. 15.
    Bu L, Peng J, Peng H, Liu S, Xiao H, Liu D, Pan Z, Chen Y, Chen F, He Y (2016) Fluorescent carbon dots for the sensitive detection of Cr(VI) in aqueous media and their application in test papers. RSC Adv 6(98):95469–95475.  https://doi.org/10.1039/c6ra19977a CrossRefGoogle Scholar
  16. 16.
    Zhou X, Zhao G, Tan X, Qian X, Zhang T, Gui J, Yang L, Xie X (2019) Nitrogen-doped carbon dots with high quantum yield for colorimetric and fluorometric detection of ferric ions and in a fluorescent ink. Microchim Acta 186(2):67–75.  https://doi.org/10.1007/s00604-018-3176-9 CrossRefGoogle Scholar
  17. 17.
    Pirsaheb M, Mohammadi S, Salimi A, Payandeh M (2019) Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: a review. Microchim Acta 186(4):231–250.  https://doi.org/10.1007/s00604-019-3338-4 CrossRefGoogle Scholar
  18. 18.
    Chizhik AM, Stein S, Dekaliuk MO, Battle C, Li W, Huss A, Platen M, Schaap IA, Gregor I, Demchenko AP (2015) Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett 16(1):237–242.  https://doi.org/10.1021/acs.nanolett.5b03609 CrossRefPubMedGoogle Scholar
  19. 19.
    Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48(37):6903–6908.  https://doi.org/10.1002/anie.200902073 CrossRefGoogle Scholar
  20. 20.
    Xu L, Fan H, Huang L, Xia J, Huang J, Li M, Ding H, Huang K, Li S (2017) Eosinophilic nitrogen-doped carbon dots derived from tribute chrysanthemum for label-free detection of Fe3+ ions and hydrazine. J Taiwan Inst Chem E 78:247–253.  https://doi.org/10.1016/j.jtice.2017.06.011 CrossRefGoogle Scholar
  21. 21.
    Srivastava RM, Singh S, Dubey SK, Misra K, Khar A (2011) Immunomodulatory and therapeutic activity of curcumin. Int Immunopharmacol 11(3):331–341.  https://doi.org/10.1016/j.intimp.2010.08.014 CrossRefPubMedGoogle Scholar
  22. 22.
    Merrick CJ, Jackson D, Diffley JF (2004) Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 279(19):20067–20075.  https://doi.org/10.1074/jbc.M400022200 CrossRefPubMedGoogle Scholar
  23. 23.
    Biedermann LB, Bolen ML, Capano MA (2009) Insights into few-layer epitaxial graphene growth on 4 H-SiC (0001) substrates from STM studies. Phys Rev B 79(12):125411–125410.  https://doi.org/10.1103/PhysRevB.79.125411 CrossRefGoogle Scholar
  24. 24.
    Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738.  https://doi.org/10.1002/adma.200902825 CrossRefPubMedGoogle Scholar
  25. 25.
    Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6):5102–5110.  https://doi.org/10.1021/nn300760g CrossRefPubMedGoogle Scholar
  26. 26.
    Liang Q, Ma W, Shi Y, Li Z, Yang X (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60(12):421–428.  https://doi.org/10.1016/j.carbon.2013.04.055 CrossRefGoogle Scholar
  27. 27.
    Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, Li CM, Yu T (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 125(30):7954–7958.  https://doi.org/10.1002/ange.201301114 CrossRefGoogle Scholar
  28. 28.
    Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12(3):332–347.  https://doi.org/10.2174/138945011794815356 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhang Q, Chen B, Zou H, Li Y, Huang C (2018) Inner filter with carbon quantum dots: a selective sensing platform for detection of hematin in human red cells. Biosens Bioelectron 100:148–154.  https://doi.org/10.1016/j.bios.2017.08.049 CrossRefPubMedGoogle Scholar
  30. 30.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New YorkCrossRefGoogle Scholar
  31. 31.
    Xu H, Yu DH, Liu LL, Yan PH, Yue ZY (2010) Small molecular glasses based on multiposition encapsulated phenyl benzimidazole iridium(III) complexes: toward efficient solution-processable host-free electrophosphorescent diodes. J Phys Chem B 114(1):141–150.  https://doi.org/10.1021/jp909297d CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang H, Chen Y, Liang M, Xu L, Qi S, Chen H, Chen X (2014) Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem 86(19):9846–9852.  https://doi.org/10.1021/ac502446m CrossRefPubMedGoogle Scholar
  33. 33.
    Verma NC, Rao C, Nandi CK (2018) Nitrogen-doped biocompatible carbon dot as a fluorescent probe for STORM nanoscopy. J Phys Chem C 122(8):4704–4709.  https://doi.org/10.1021/acs.jpcc.7b12773 CrossRefGoogle Scholar
  34. 34.
    Das SK, Liu Y, Yeom S, Kim DY, Richards CI (2014) Single-particle fluorescence intensity fluctuations of carbon nanodots. Nano Lett 14(2):620–625.  https://doi.org/10.1021/nl403820m CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations