Microchimica Acta

, 186:663 | Cite as

Photoelectrochemical determination of the activity of histone acetyltransferase and inhibitor screening by using MoS2 nanosheets

  • Huanshun Yin
  • Hanwen Wu
  • Yan Chen
  • Fei Li
  • Jun WangEmail author
  • Shiyun Ai
Original Paper


The enzyme histone acetyltransferase (HAT) catalyzes the acetylation of a substrate peptide, and acetyl coenzyme A is converted to coenzyme A (CoA). A photoelectrochemical method is described for the determination of the HAT activity by using exfoliated MoS2 nanosheets, phos-tag-biotin, and β-galactosidase (β-Gal) based signal amplification. The MoS2 nanosheets are employed as the photoactive material, graphene nanosheets as electron transfer promoter, gold nanoparticles as recognition and capture reagent for CoA, and phos-tag-biotin as the reagent to link CoA and β-Gal. The enzyme β-Gal catalyzes the hydrolysis of substrate O-galactosyl-4-aminophenol to generate free 4-aminophenol which is a photoelectrochemical electron donor. The photocurrent increases with the activity of HAT. Under optimal conditions, the response is linear in the 0.3 to 100 nM activity range, and the detection limit is 0.14 nM (at S/N = 3). The assay was applied to HAT inhibitor screening, specifically for the inhibitors C646 and anacardic acid. The IC50 values are 0.28 and 39 μM, respectively. The method is deemed to be a promising tool for epigenetic research and HAT-targeted cancer drug discovery.

Graphical abstract

Histone acetyltransferase was detected using a sensitive photoelectrochemical method using MoS2 nanosheets as photoactive material.


Phos-tag-biotin Photoelectrochemistry C646 Anacardic acid 4-Aminophenol β-Galactosidase Graphene Acetyl coenzyme A Gold nanoparticles Visible light excitation 



This work was supported by the National key research and development project of China (2018YFC1800605), the National Natural Science Foundation of China (No. 21775090), the Natural Science Foundation of Shandong province, China (No. ZR2016BM10), the Special Funds of Taishan Scholar of Shandong Province, China.

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2019_3756_MOESM1_ESM.doc (224 kb)
ESM 1 (DOC 224 kb)


  1. 1.
    Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. EMBO Rep 3:224–229. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning Z-B, Zeng R, Xiong Y, Guan K-L, Zhao S, Zhao G-P (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004–1007. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bai X, Wu L, Liang T, Liu Z, Li J, Li D, Xie H, Yin S, Yu J, Lin Q, Zheng S (2008) Overexpression of myocyte enhancer factor 2 and histone hyperacetylation in hepatocellular carcinoma. J Cancer Res Clin Oncol 134:83–91. CrossRefPubMedGoogle Scholar
  4. 4.
    Li P, Han Y, Li Y, Zhu R, Wang H, Nie Z, Yao S (2016) Bioanalytical approaches for the detection of protein acetylation-related enzymes. Anal Bioanal Chem 408:2659–2668. CrossRefPubMedGoogle Scholar
  5. 5.
    Zou Y, Wang Z, Zhang H, Liu Y (2018) A novel electrogenerated chemiluminescence biosensor for histone acetyltransferases activity analysis and inhibition based on mimetic superoxide dismutase of tannic acid assembled nanoprobes. Biosens Bioelectron 122:205–210. CrossRefPubMedGoogle Scholar
  6. 6.
    Zhao W-W, Xu J-J, Chen H-Y (2016) Photoelectrochemical aptasensing. TrAC Trends Anal Chem 82:307–315. CrossRefGoogle Scholar
  7. 7.
    Zhou Y, Yin H, Sui C, Wang Y, Ai S (2019) Photoelectrochemical detection of 5-hydroxymethylcytosine in genomic DNA based on M. HhaI methyltransferase catalytic covalent bonding. Chem Eng J 357:94–102. CrossRefGoogle Scholar
  8. 8.
    Wang M, Yin H, Zhou Y, Meng X, Waterhouse GIN, Ai S (2019) A novel photoelectrochemical biosensor for the sensitive detection of dual microRNAs using molybdenum carbide nanotubes as nanocarriers and energy transfer between CQDs and AuNPs. Chem Eng J 365:351–357. CrossRefGoogle Scholar
  9. 9.
    Tabrizi MA, Ferré-Borrull J, Kapruwan P, Marsal LF (2019) A photoelectrochemical sandwich immunoassay for protein S100β, a biomarker for Alzheimer’s disease, using an ITO electrode modified with a reduced graphene oxide-gold conjugate and CdS-labeled secondary antibody. Microchim Acta 186:117. CrossRefGoogle Scholar
  10. 10.
    Wang H, Qi C, He W, Wang M, Jiang W, Yin H, Ai S (2018) A sensitive photoelectrochemical immunoassay of N6-methyladenosine based on dual-signal amplification strategy: Ru doped in SiO2 nanosphere and carboxylated g-C3N4. Biosens Bioelectron 99:281–288. CrossRefPubMedGoogle Scholar
  11. 11.
    Wang M, Yin H, Zhou Y, Sui C, Wang Y, Meng X, Waterhouse GIN, Ai S (2019) Photoelectrochemical biosensor for microRNA detection based on a MoS2/g-C3N4/black TiO2 heterojunction with Histostar@AuNPs for signal amplification. Biosens Bioelectron 128:137–143. CrossRefPubMedGoogle Scholar
  12. 12.
    Liu B, Lu L (2019) Amperometric sandwich immunoassay for determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbon. Microchim Acta 186:262. CrossRefGoogle Scholar
  13. 13.
    Ran P, Song J, Mo F, Wu J, Liu P, Fu Y (2019) Nitrogen-doped graphene quantum dots coated with gold nanoparticles for electrochemiluminescent glucose detection using enzymatically generated hydrogen peroxide as a quencher. Microchim Acta 186:276. CrossRefGoogle Scholar
  14. 14.
    Fortunati S, Rozzi A, Curti F, Giannetto M, Corradini R, Careri M (2019) Novel amperometric genosensor based on peptide nucleic acid (PNA) probes immobilized on carbon nanotubes-screen printed electrodes for the determination of trace levels of non-amplified DNA in genetically modified (GM) soy. Biosens Bioelectron 129:7–14. CrossRefPubMedGoogle Scholar
  15. 15.
    Wang Y-H, Xia H, Huang K-J, Wu X, Ma Y-Y, Deng R, Lu Y-F, Han Z-W (2018) Ultrasensitive determination of thrombin by using an electrode modified with WSe2 and gold nanoparticles, aptamer-thrombin-aptamer sandwiching, redox cycling, and signal enhancement by alkaline phosphatase. Microchim Acta 185:502. CrossRefGoogle Scholar
  16. 16.
    Zhao W-W, Chen R, Dai P-P, Li X-L, Xu J-J, Chen H-Y (2014) A general strategy for photoelectrochemical immunoassay using an enzyme label combined with a CdS quantum dot/TiO2 nanoparticle composite electrode. Anal Chem 86:11513–11516. CrossRefPubMedGoogle Scholar
  17. 17.
    Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757. CrossRefPubMedGoogle Scholar
  18. 18.
    Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252. CrossRefPubMedGoogle Scholar
  19. 19.
    Li BL, Zou HL, Lu L, Yang Y, Lei JL, Luo HQ, Li NB (2015) Size-dependent optical absorption of layered MoS2 and DNA oigonucleotides induced dispersion behavior for Labe-free detection of single-nucleotide polymorphism. Adv Funct Mater 25:3541–3550. CrossRefGoogle Scholar
  20. 20.
    Zhou Y, Fan X, Zhang G, Dong W (2019) Fabricating MoS2 nanoflakes photoanode with unprecedented high photoelectrochemical performance and multi-pollutants degradation test for water treatment. Chem Eng J 356:1003–1013. CrossRefGoogle Scholar
  21. 21.
    Sun H, Wu S, Zhou X, Zhao M, Wu H, Luo R, Ding S (2019) Electrochemical sandwich immunoassay for insulin detection based on the use of gold nanoparticle-modified MoS2 nanosheets and the hybridization chain reaction. Microchim Acta 186(6).
  22. 22.
    Parra-Alfambra AM, Casero E, Vázquez L, Quintana C, del Pozo M-D, Petit-Domíngueza MD (2018) MoS2 nanosheets for improving analytical performance of lactate biosensors. Sensors Actuators B Chem 274:310–317. CrossRefGoogle Scholar
  23. 23.
    Qiao X, Li K, Xu J, Cheng N, Sheng Q, Cao W, Yue T, Zheng J (2018) Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-MoS2 nanoconjugates. Biosens Bioelectron 113:142–147. CrossRefPubMedGoogle Scholar
  24. 24.
    Hao N, Hua R, Chen S, Zhang Y, Zhou Z, Qian J, Liu Q, Wang K (2018) Multiple signal-amplification via ag and TiO2 decorated 3D nitrogen doped graphene hydrogel for fabricating sensitive label-free photoelectrochemical thrombin aptasensor. Biosens Bioelectron 101:14–20. CrossRefPubMedGoogle Scholar
  25. 25.
    Zhou Q, Lin Y, Zhang K, Li M, Tang D (2018) Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosens Bioelectron 101:146–152. CrossRefPubMedGoogle Scholar
  26. 26.
    Miao X, Wang Y, Gu Z, Mao D, Ning L, Cao Y (2019) Cucurbit[8]uril-assisted peptide assembly for feasible electrochemical assay of histone acetyltransferase activity. Anal Bioanal Chem 411:387–393. CrossRefPubMedGoogle Scholar
  27. 27.
    Xu L, Zhang Q, Hu Y, Ma S, Hu D, Wang J, Rao J, Guo Z, Wang S, Wu D, Liu Q, Peng J (2019) Ultrasensitive mushroom-like electrochemical immunosensor for probing the activity of histone acetyltransferase. Anal Chim Acta 1066:28–35. CrossRefPubMedGoogle Scholar
  28. 28.
    Han Y, Li P, Xu Y, Li H, Song Z, Nie Z, Chen Z, Yao S (2015) Fluorescent nanosensor for probing histone acetyltransferase activity based on acetylation protection and magnetic graphitic nanocapsules. Small 11:877–885. CrossRefPubMedGoogle Scholar
  29. 29.
    Chen S, Li Y, Hu Y, Han Y, Huang Y, Nie Z, Yao S (2015) Nucleic acid-mimicking coordination polymer for label-free fluorescent activity assay of histone acetyltransferases. Chem Commun 51:4469–4472CrossRefGoogle Scholar
  30. 30.
    Ghadiali JE, Lowe SB, Stevens MM (2011) Quantum-dot-based FRET detection of histone acetyltransferase activity. Angew Chem Int Ed 123:3417–3420. CrossRefGoogle Scholar
  31. 31.
    Zhen Z, Tang L-J, Long H, Jiang J-H (2012) Enzymatic immuno-assembly of gold nanoparticles for visualized activity screening of histone-modifying enzymes. Anal Chem 84:3614–3620CrossRefGoogle Scholar
  32. 32.
    Zou Y, Zhang H, Wang Z, Liu Q, Liu Y (2019) A novel ECL method for histone acetyltransferases (HATs) activity analysis by integrating HCR signal amplification and ECL silver clusters. Talanta 198:39–44. CrossRefPubMedGoogle Scholar
  33. 33.
    Chen H, Liu X, Li W, Peng Y, Nie Z (2019) Silver coordination complex amplified electrochemiluminescence sensor for sensitive detection of coenzyme a and histone acetyltransferase activity. Biosens Bioelectron 126:535–542. CrossRefPubMedGoogle Scholar
  34. 34.
    Wang H, Li Y, Zhao K, Chen S, Wang Q, Lin B, Nie Z, Yao S (2017) G-quadruplex-based fluorometric biosensor for label-free and homogenous detection of protein acetylation-related enzymes activities. Biosens Bioelectron 91:400–407. CrossRefPubMedGoogle Scholar
  35. 35.
    van den Bosch T, Boichenko A, Leus NGJ, Ourailidou ME, Wapenaar H, Rotili D, Mai A, Imhof A, Bischoff R, Haisma HJ, Dekker FJ (2016) The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases. Biochem Pharmacol 102:130–140. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Material ScienceShandong Agricultural UniversityTai′anPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China
  3. 3.College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of ShandongShandong Agricultural UniversityTai′anPeople’s Republic of China

Personalised recommendations