Advertisement

Microchimica Acta

, 186:639 | Cite as

A nanocomposite prepared from metal-free mesoporous carbon nanospheres and graphene oxide for voltammetric determination of doxorubicin

  • Jian Liu
  • Xiangjie Bo
  • Ming ZhouEmail author
  • Liping GuoEmail author
Original Paper
  • 114 Downloads

Abstract

A metal-free catalyst is described that consists of a composite that can be prepared from mesoporous carbon spheres (MCS) and graphene oxide (GO) under mild aqueous synthetic conditions. The reduced graphene oxide (rGO) sheets tend to aggregate, but due to the insertion of MCS, the aggregation is prevented. This leads to a larger surface area and more adsorption sites for the cancer drug doxorubicin (DOX). The π-interaction between DOX and rGO is also beneficial for the adsorption of DOX. A glassy carbon electrode (GCE) was modified with the composite and used to detect low levels of DOX, typically at a peak potential near −0.45 V (vs. Ag/AgCl). The modified GCE has a wide linear response range (10 nM - 10 μM), a low limit of detection (1.5 nM; at S/N = 3), excellent selectivity, long-term storage stability and reproducibility. It was applied to the determination of DOX in spiked serum where it gave reliable results.

Graphical abstract

Schematic representation of the preparation of mesoporous carbon spheres/reduced graphene oxide (MCS/rGO) sample, and the CV scan of doxorubicin (DOX) on MCS/rGO based nanoprode.

Keywords

Electrochemical determination Electrocatalyst Carbon composites Reduced graphene oxide Anthracycline 

Notes

Acknowledgments

Financial support from National Natural Science Foundation of China (21575021) and “the Fundamental Research Funds for the Central Universities (2412019QD008)” are highly appreciated.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3754_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1867 kb)

References

  1. 1.
    Venkatesan R, Pichaimani A, Hari K, Balasubramanian PK, Kulandaivel J, Premkumar K (2013) Doxorubicin conjugated gold nanorods: a sustained drug delivery carrier for improved anticancer therapy. J Mater Chem B 1(7):1010–1018CrossRefGoogle Scholar
  2. 2.
    Chamberlain GR, Tulumello DV, Kelley SO (2013) Targeted delivery of doxorubicin to mitochondria. ACS Chem Biol 8(7):1389–1395CrossRefGoogle Scholar
  3. 3.
    Cerroni B, Chiessi E, Margheritelli S, Oddo L, Paradossi G (2011) Polymer shelled microparticles for a targeted doxorubicin delivery in cancer therapy. Biomacromolecules 12(3):593–601CrossRefGoogle Scholar
  4. 4.
    Gan T, Sun J, Cao S, Gao F, Zhang Y, Yang Y (2012) One-step electrochemical approach for the preparation of graphene wrapped-phosphotungstic acid hybrid and its application for simultaneous determination of sunset yellow and tartrazine. Electrochim Acta 74:151–157CrossRefGoogle Scholar
  5. 5.
    Pirsaheb M, Mohammadi S, Salimi A, Payandeh M (2019) Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: a review. Microchim Acta 186(4):231CrossRefGoogle Scholar
  6. 6.
    Monneret C (2001) Recent developments in the field of antitumour anthracyclines. Eur J Med Chem 36(6):483–493CrossRefGoogle Scholar
  7. 7.
    Lu H, Yuan G, He Q, Chen H (2009) Rapid analysis of anthracycline antibiotics doxorubicin and daunorubicin by microchip capillary electrophoresis. Microchem J 92(2):170–173CrossRefGoogle Scholar
  8. 8.
    Katzenmeyer JB, Eddy CV, Arriaga EA (2010) Tandem laser-induced fluorescence and mass spectrometry detection for high-performance liquid chromatography analysis of the in vitro metabolism of doxorubicin. Anal Chem 82(19):8113–8120CrossRefGoogle Scholar
  9. 9.
    Trevisan MG, Poppi RJ (2003) Determination of doxorubicin in human plasma by excitation-emission matrix fluorescence and multi-way analysis. Anal Chim Acta 493(1):69–81CrossRefGoogle Scholar
  10. 10.
    Hajian R, Tayebi Z, Shams N (2017) Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J Pharm Anal 7(1):27–33CrossRefGoogle Scholar
  11. 11.
    Fei J, Wen X, Zhang Y, Yi L, Chen X, Cao H (2009) Voltammetric determination of trace doxorubicin at a nano-titania/nafion composite film modified electrode in the presence of cetyltrimethylammonium bromide. Microchim Acta 164(1–2):85–91CrossRefGoogle Scholar
  12. 12.
    Guo H, Jin H, Gui R, Wang Z, Xia J, Zhang F (2017) Electrodeposition one-step preparation of silver nanoparticles/carbon dots/reduced graphene oxide ternary dendritic nanocomposites for sensitive detection of doxorubicin. Sensors Actuators B Chem 253:50–57CrossRefGoogle Scholar
  13. 13.
    Benzigar MR, Talapaneni SN, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A (2018) Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem Soc Rev 47(8):2680–2721CrossRefGoogle Scholar
  14. 14.
    Huang F, Zhu B, Zhang H, Gao Y, Ding C, Tan H, Li J (2019) A glassy carbon electrode modified with molecularly imprinted poly (aniline boronic acid) coated onto carbon nanotubes for potentiometric sensing of sialic acid. Microchim Acta 186(5):270CrossRefGoogle Scholar
  15. 15.
    Bo X, Guo L (2013) Simple synthesis of macroporous carbon-graphene composites and their use as a support for Pt electrocatalysts. Electrochim Acta 90:283–290CrossRefGoogle Scholar
  16. 16.
    Chen X, Oh W-D, Lim T-T (2018) Graphene- and CNTs-based carbocatalysts in persulfates activation: material design and catalytic mechanisms. Chem Eng J 354:941–976CrossRefGoogle Scholar
  17. 17.
    Javed K, Krumme A, Viirsalu M, Krasnou I, Plamus T, Vassiljeva V, Tarasova E, Savest N, Mere A, Mikli V, Danilson M, Kaljuvee T, Lange S, Yuan Q, Topham PD, Chen C-M (2018) A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning. Carbon 140:148–156CrossRefGoogle Scholar
  18. 18.
    Bo X, Zhou M, Guo L (2017) Electrochemical sensors and biosensors based on less aggregated graphene. Biosens Bioelectron 89:167–186CrossRefGoogle Scholar
  19. 19.
    Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R, Deng Y, Tu B, Zhao D (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem 49(43):7987–7991CrossRefGoogle Scholar
  20. 20.
    Hsiao M-C, Liao S-H, Yen M-Y, Teng C-C, Lee S-H, Pu N-W, Wang C-A, Sung Y, Ger M-D, Ma C-CM, Hsiao M-H (2010) Preparation and properties of a graphene reinforced nanocomposite conducting plate. J Mater Chem 20(39):8496–8505CrossRefGoogle Scholar
  21. 21.
    Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/Polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401CrossRefGoogle Scholar
  22. 22.
    Komorsky-Lovric S (2006) Redox kinetics of adriamycin adsorbed on the surface of graphite and mercury electrodes. Bioelectrochemistry 69(1):82–87CrossRefGoogle Scholar
  23. 23.
    Vacek J, Lk H, Fojta M (2009) Ex situ voltammetry and chronopotentiometry of doxorubicin at a pyrolytic graphite electrode: redox and catalytic properties and analytical applications. Electroanalysis 21(19):2139–2144CrossRefGoogle Scholar
  24. 24.
    Hahn Y, Lee HY (2004) Electrochemical behavior and square wave voltammetric determination of doxorubicin hydrochloride. Arch Pharm Res 27(1):31–34CrossRefGoogle Scholar
  25. 25.
    Peng A (2016) Application of a disposable doxorubicin sensor for direct determination of clinical drug concentration in patient blood. Int J Electrochem Sci:6266–6278Google Scholar
  26. 26.
    Soleymani J, Hasanzadeh M, Shadjou N, Khoubnasab Jafari M, Gharamaleki JV, Yadollahi M, Jouyban A (2016) A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater Sci Eng, C 61:638–650CrossRefGoogle Scholar
  27. 27.
    Haghshenas E, Madrakian T, Afkhami A (2016) Electrochemically oxidized multiwalled carbon nanotube/glassy carbon electrode as a probe for simultaneous determination of dopamine and doxorubicin in biological samples. Anal Bioanal Chem 408(10):2577–2586CrossRefGoogle Scholar
  28. 28.
    Hashemzadeh N, Hasanzadeh M, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M, Jouyban A (2016) Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma. J Pharm Anal 6(4):235–241CrossRefGoogle Scholar
  29. 29.
    Chaney EN, Baldwin RP (1982) Electrochemical determination of adriamycin compounds in urine by preconcentration at carbon paste electrodes. Anal Chem 54(14):2556–2560CrossRefGoogle Scholar
  30. 30.
    Porfireva A, Vorobev V, Babkina S, Evtugyn G (2019) Electrochemical sensor based on poly(azure B)-DNA composite for doxorubicin determination. Sensors (Basel) 19(9):2085CrossRefGoogle Scholar
  31. 31.
    Kalambate PK, Li Y, Shen Y, Huang Y (2019) Mesoporous Pd@Pt core-shell nanoparticles supported on multi-walled carbon nanotubes as a sensing platform: application in simultaneous electrochemical detection of anticancer drugs doxorubicin and dasatinib. Anal Methods 11(4):443–453CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of ChemistryNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations