Microchimica Acta

, 186:651 | Cite as

Simultaneous voltammetric determination of acetaminophen, naproxen, and theophylline using an in-situ polymerized poly(acrylic acid) nanogel covalently grafted onto a carbon black/La2O3 composite

  • Bhuvanenthiran Mutharani
  • Palraj Ranganathan
  • Shen-Ming ChenEmail author
  • Chelladurai Karuppiah
Original Paper


Lanthanum oxide nanomaterials were decorated with carbon black (CB) and grafted with a poly(acrylic acid) nanogel to obtain a composite material (CB-g-PAA/La2O3) for simultaneous determination of acetaminophen (AMP), naproxen (NPX), and theophylline (TPH). The nanogel was synthesized by in-situ free radical polymerization. The composite was dropped onto a glassy carbon electrode (GCE), and the modified GCE displays robust electrocatalytic activity towards AMP, NPX, and TPH, with voltammetric signals that are enhanced compared to a bare GCE. Features of merit for AMP, NPX, and TPH, respectively, include (a) peak potentials of 0.42, 0.85 and 0.12 V (vs. Ag/AgCl), (b) linear ranges from 0.05–887, 0.05–884, and 0.02–888 μM, and (c) detection limits of 20, 35, and 15 nM. The practical applicability of the CB-g-PAA/La2O3/GCE was illustrated by analyzing serum and urine samples.

Graphical abstract

Schematic presentation of simultaneous electrochemical sensing of acetaminophen (AMP), naproxen (NPX), and theophylline (TPH) in real sample analysis using poly(acrylic acid) nanogel covalently grafted onto a carbon black/La2O3 composite (CB-g-PAA/La2O3/GCE).


Electroanalytical Simultaneous determination Nanogel Human blood serum And urine samples 



This project was supported by the Ministry of Science and Technology (MOST 106-2113-M-027-003), Taiwan, ROC.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3752_MOESM1_ESM.docx (4.5 mb)
ESM 1 (DOCX 4656 kb)


  1. 1.
    Zhang Y, Huang Z, Wang L, Wang C, Zhang C, Wiese T, Wang G, Riley K, Wang Z (2018) Point-of-care determination of acetaminophen levels with multi-hydrogen bond manipulated single-molecule recognition (eMuHSiR). Anal Chem 90:4733–4740CrossRefGoogle Scholar
  2. 2.
    Nourjah P, Ahmad SR, Karwoski C, Willy M (2006) Estimates of acetaminophen (paracetomal)-associated overdoses in the United States. Pharmacoepidemiol Drug Saf 15:398–405CrossRefGoogle Scholar
  3. 3.
    Gouda AA, El-Sayed MIK, Amin AS, El Sheikh R (2013) Spectrophotometric and spectrofluorometric methods for the determination of non-steroidal anti-inflammatory drugs: a review. Arab J Chem 6:145–163CrossRefGoogle Scholar
  4. 4.
    Bjarnason I, Thjodleifsson B (1999) Gastrointestinal toxicity of non-steroidal anti-inflammatory drugs: the effect of nimesulide compared with naproxen on the human gastrointestinal tract. Rheumatology (Oxford, England) 38:24–32CrossRefGoogle Scholar
  5. 5.
    Giraud MN, Motta C, Romero JJ, Bommelaer G, Lichtenberger LM (1999) Interaction of indomethacin and naproxen with gastric surface-active phospholipids: a possible mechanism for the gastric toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs)∗. Biochem Pharmacol 57:247–254CrossRefGoogle Scholar
  6. 6.
    Victorino RM, Silveira JC, Baptista A, De Moura MC (1980) Jaundice associated with naproxen. Postgrad Med J 56:368–370CrossRefGoogle Scholar
  7. 7.
    Isidori M, Lavorgna M, Nardelli A, Parrella A, Previtera L, Rubino M (2005) Ecotoxicity of naproxen and its phototransformation products. Sci Total Environ 348:93–101CrossRefGoogle Scholar
  8. 8.
    Sullivan P, Jaffar Z, Page C, Costello J, Bekir S, Jeffery P (1994) Anti-inflammatory effects of low-dose oral theophylline in atopic asthma. Lancet. 343:1006–1008CrossRefGoogle Scholar
  9. 9.
    Minton NA, Henry JA (1996) Treatment of theophylline overdose. Am J Emerg Med 14:606–612CrossRefGoogle Scholar
  10. 10.
    Norouzi P, Haji-Hashemi H, Larijani B, Aghazadeh M, Pourbasheer E, Ganjali RM (2017) Application of new advanced electrochemical methods combine with nano-based materials sensor in drugs analysis. Curr Anal Chem 13:70–80CrossRefGoogle Scholar
  11. 11.
    Zhang X, Xiao Q, Zhang Y, Jiang X, Yang Z, Xue Y, Sun K (2014) La2O3 doped carbonaceous microspheres: a novel bifunctional electrocatalyst for oxygen reduction and evolution reactions with ultrahigh mass activity. J Phys Chem C 118:20229–20237CrossRefGoogle Scholar
  12. 12.
    Miah M, Bhattacharya S, Dinda D, Saha SK (2018) Temperature dependent supercapacitive performance in La2O3 nano sheet decorated reduce graphene oxide. Electrochim Acta 260:449–458CrossRefGoogle Scholar
  13. 13.
    Ye W, Yu J, Zhou Y, Gao D, Wang D, Wang C, Xue D (2016) Green synthesis of Pt–Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl Catal B 181:371–378CrossRefGoogle Scholar
  14. 14.
    Silva TA, Moraes FC, Janegitz BC, Fatibello-Filho O (2017) Electrochemical biosensors based on nanostructured carbon black: a review. J Nanomater 2017:4571614Google Scholar
  15. 15.
    Gu W, Liu J, Hu M, Wang F, Song Y (2015) La2O2CO3 encapsulated La2O3 nanoparticles supported on carbon as superior electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interfaces 7:26914–26922CrossRefGoogle Scholar
  16. 16.
    Jaffe A, Saldivar Valdes A, Karunadasa HI (2015) Quinone-functionalized carbon black cathodes for lithium batteries with high power densities. Chem Mater 27:3568–3571CrossRefGoogle Scholar
  17. 17.
    Jiang Q, Wang S, Xu S (2018) Preparation and characterization of water-dispersible carbon black grafted with polyacrylic acid by high-energy electron beam irradiation. J Mater Sci 53:6106–6115CrossRefGoogle Scholar
  18. 18.
    Tsubokawa N (1992) Functionalization of carbon black by surface grafting of polymers. Prog Polym Sci 17:417–470CrossRefGoogle Scholar
  19. 19.
    Rubio N, Au H, Leese HS, Hu S, Clancy AJ, Shaffer MS (2017) Grafting from versus grafting to approaches for the functionalization of graphene nanoplatelets with poly (methyl methacrylate). Macromolecules 50:7070–7079CrossRefGoogle Scholar
  20. 20.
    Zhou G, Xu X, Wang S, He X, He W, Su X, Wong CP (2017) Surface grafting of epoxy polymer on CB to improve its dispersion to be the filler of resistive ink for PCB. Results Phys 7:1870–1877CrossRefGoogle Scholar
  21. 21.
    Tamaki T, Ito T, Yamaguchi T (2007) Immobilization of hydroquinone through a spacer to polymer grafted on carbon black for a high-surface-area biofuel cell electrode. J Phys Chem B 111:10312–10319CrossRefGoogle Scholar
  22. 22.
    Pedersen H, Söderlind F, Petoral RM Jr, Uvdal K, Käll PO, Ojamäe L (2005) Surface interactions between Y2O3 nanocrystals and organic molecules—an experimental and quantum-chemical study. Surf Sci 592:124–140CrossRefGoogle Scholar
  23. 23.
    Madaeni SS, Zinadini S, Vatanpour V (2011) A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J Membr Sci 380:155–162CrossRefGoogle Scholar
  24. 24.
    Jiang Q, Wang S, Xu S (2018) Preparation and characterization of water-dispersible carbon black grafted with polyacrylic acid by high-energy electron beam irradiation. J Mater Sci 53:6106–6115CrossRefGoogle Scholar
  25. 25.
    Chen S, Pan B, Zeng L, Luo S, Wang X, Su W (2017) La2Sn2O7 enhanced photocatalytic CO2 reduction with H2O by deposition of Au CO-catalyst. RSC Adv 7:14186–14191CrossRefGoogle Scholar
  26. 26.
    Pandey RR, Alshahrani HS, Krylyuk S, Williams EH, Davydov AV, Chusuei CC (2018) Electrochemical detection of acetaminophen with silicon nanowires. Electroanalysis 30:886–891CrossRefGoogle Scholar
  27. 27.
    Sarhangzadeh K (2015) Application of multi wall carbon nanotube–graphene hybrid for voltammetric determination of naproxen. J Iran Chem Soc 12:2133–2140CrossRefGoogle Scholar
  28. 28.
    Hegde RN, Hosamani RR, Nandibewoor ST (2009) Electrochemical oxidation and determination of theophylline at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing agent. Anal Lett 42:2665–2682CrossRefGoogle Scholar
  29. 29.
    Shahrokhian S, Asadian E (2010) Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim Acta 55:666–672CrossRefGoogle Scholar
  30. 30.
    Jiang L, Gu S, Ding Y, Jiang F, Zhang Z (2014) Facile and novel electrochemical preparation of a graphene–transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin. Nanoscale 6:207–214CrossRefGoogle Scholar
  31. 31.
    Engin C, Yilmaz S, Saglikoglu G, Yagmur S, Sadikoglu M (2015) Electroanalytical investigation of paracetamol on glassy carbon electrode by voltammetry. Int J Electrochem Sci 10:1916–1925Google Scholar
  32. 32.
    Fan Y, Liu JH, Lu HT, Zhang Q (2011) Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2–graphene modified glassy carbon electrode. Colloids Surf B 85:289–292CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Luo L, Ding Y, Liu X, Qian Z (2010) A highly sensitive method for determination of paracetamol by adsorptive stripping voltammetry using a carbon paste electrode modified with nanogold and glutamic acid. Microchim Acta 171:133–138CrossRefGoogle Scholar
  34. 34.
    Adhoum N, Monser L, Toumi M, Boujlel K (2003) Determination of naproxen in pharmaceuticals by differential pulse voltammetry at a platinum electrode. Anal Chim Acta 495:69–75CrossRefGoogle Scholar
  35. 35.
    Tashkhourian J, Hemmateenejad B, Beigizadeh H, Hosseini-Sarvari M, Razmi Z (2014) ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques. J Electroanal Chem 714:103–108CrossRefGoogle Scholar
  36. 36.
    Baj-Rossi C, Jost TR, Cavallini A, Grassi F, De Micheli G, Carrara S (2014) Continuous monitoring of naproxen by a cytochrome P450-based electrochemical sensor. Biosens Bioelectron 53:283–287CrossRefGoogle Scholar
  37. 37.
    Montes RH, Stefano JS, Richter EM, Munoz RA (2014) Exploring multiwalled carbon nanotubes for naproxen detection. Electroanalysis 26:1449–1453CrossRefGoogle Scholar
  38. 38.
    Peng A, Yan H, Luo C, Wang G, Ye X, Ding H (2017) Electrochemical determination of theophylline pharmacokinetic under the effect of roxithromycin in rats by the MWNTs/Au/poly-L-lysine modified sensor. Int J Electrochem Sci 12:330–346CrossRefGoogle Scholar
  39. 39.
    Zhuang X, Chen D, Wang S, Liu H, Chen L (2017) Manganese dioxide nanosheet-decorated ionic liquid-functionalized graphene for electrochemical theophylline biosensing. Sensors Actuators B Chem 251:185–191CrossRefGoogle Scholar
  40. 40.
    da Silva W, Ghica ME, Brett C (2018) Gold nanoparticle decorated multiwalled carbon nanotube modified electrodes for the electrochemical determination of theophylline. Anal Methods 10:5634–5642CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiTaiwan, Republic of China
  2. 2.Institute of Organic and Polymeric MaterialsNational Taipei University of TechnologyTaipeiTaiwan, Republic of China
  3. 3.Research and Development Center for Smart Textile TechnologyNational Taipei University of TechnologyTaipeiTaiwan, Republic of China
  4. 4.Battery Research Center of Green EnergyMing Chi University of TechnologyNew Taipei CityTaiwan, Republic of China

Personalised recommendations