Microchimica Acta

, 186:673 | Cite as

Water-dispersed silicon quantum dots for on-off-on fluorometric determination of chromium(VI) and ascorbic acid

  • Wen Xu
  • Lishuang Yu
  • Huifeng Xu
  • Shiqi Zhang
  • Wei XuEmail author
  • Yu LinEmail author
  • Xi ZhuEmail author
Original Paper


Water-dispersed silicon quantum dots (SiQDs) with the quantum yield of 25% was prepared using aminopropyltrimethoxysilane as the silicon source and ascorbic acid (AA) as the reduction reagent. The SiQDs display blue fluorescence with excitation/emission peaks at 350 nm/440 nm. The synthesized SiQDs are shown to be a viable “on-off-on” fluorescent probe for the detection of Cr(VI) and AA. Cr(VI) ions exert an inner filter effect on the fluorescence of the SiQDs which results in a reduction of fluorescence (off-state). On addition of AA, Cr(VI) is chemically reduced to Cr(III) which weakens the inner filter effect and restores fluorescence (on-state). The method has low detection limits for both Cr(VI) and AA (0.16 μM and 0.57 μM, respectively). It was applied to the analysis of spiked lotus seeds and human serum samples.

Graphical abstract

A simple and facile “on-off-on” fluorometric method for Cr(VI) and ascorbic acid (AA) was developed using water-soluble silicon quantum dots (SiQDs) as the fluorescent probe. The approach was also used to assay Cr(VI) and AA in the lotus seeds and human serum, respectively.


Silicon quantum dots Ascorbic acid Fluorescent nanoprobe Cr(VI) 



This project was financially supported by NSFC (81773894, 81872990 and 21305014), the Natural Sciences Foundation of Fujian Province (2018 J01871, 2016 J01396). Huifeng Xu also thanks the Natural Science Funds of Fujian Province for Distinguished Young Scholar (2019 J06021). Wen Xu also thanks the School Supervision Subject of Fujian University of Traditional Chinese Medicine (X2017010, Chen Zhongwei).

Compliance with ethical standards

The author(s) declare that they have no competing interests.


  1. 1.
    Han Y, Chen Y, Feng J, Liu J, Ma S, Chen X (2017) One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2,4,6-Trinitrophenol in aqueous solution. Anal Chem 89(5):3001–3008. CrossRefPubMedGoogle Scholar
  2. 2.
    Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, Su Y, Lee ST, He Y (2013) Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc 135(22):8350–8356. CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang X, Chen X, Kai S, Wang HY, Yang J, Wu FG, Chen Z (2015) Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal Chem 87(6):3360–3365. CrossRefPubMedGoogle Scholar
  4. 4.
    Ma S, Chen Y, Feng J, Liu J, Zuo X, Chen X (2016) One-step synthesis of water-dispersible and biocompatible silicon nanoparticles for selective heparin sensing and cell imaging. Anal Chem 88(21):10474–10481. CrossRefPubMedGoogle Scholar
  5. 5.
    Dong YP, Wang J, Peng Y, Zhu JJ (2017) A novel aptasensor for lysozyme based on electrogenerated chemiluminescence resonance energy transfer between luminol and silicon quantum dots. Biosens Bioelectron 94:530–535. CrossRefPubMedGoogle Scholar
  6. 6.
    Hu Z, Tan J, Lai Z, Zheng R, Zhong J, Wang Y, Li X, Yang N, Li J, Yang W, Huang Y, Zhao Y, Lu X (2017) Aptamer combined with fluorescent silica nanoparticles for detection of hepatoma cells. Nanoscale Res Lett 12(1):96–103. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhao Q, Zhang R, Ye D, Zhang S, Chen H, Kong J (2017) Ratiometric fluorescent silicon quantum dots-Ce6 complex probe for the live cell imaging of highly reactive oxygen species. ACS Appl Mater Interfaces 9(3):2052–2058. CrossRefPubMedGoogle Scholar
  8. 8.
    Luo L, Song Y, Zhu C, Fu S, Shi Q, Sun Y-M, Jia B, Du D, Xu Z-L, Lin Y (2018) Fluorescent silicon nanoparticles-based ratiometric fluorescence immunoassay for sensitive detection of ethyl carbamate in red wine. Sensor Actuat B-Chem 255:2742–2749. CrossRefGoogle Scholar
  9. 9.
    Miscoria SA, Jacq C, Maeder T, Martín Negri R (2014) Screen-printed electrodes for electroanalytical sensing, of chromium VI in strong acid media. Sensor Actuat B-Chem 195:294–302. CrossRefGoogle Scholar
  10. 10.
    Anatoly Z (2011) Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 24(10):1617–1629. CrossRefGoogle Scholar
  11. 11.
    Arancibia V, Valderrama M, Silva K, Tapia T (2003) Determination of chromium in urine samples by complexation–supercritical fluid extraction and liquid or gas chromatography. J Chromatogr B 785(2):303–309. CrossRefGoogle Scholar
  12. 12.
    Anthemidis AN, Zachariadis GA, Kougoulis JS, Stratis JA (2002) Flame atomic absorption spectrometric determination of chromium(VI) by on-line preconcentration system using a PTFE packed column. Talanta 57(1):15–22. CrossRefPubMedGoogle Scholar
  13. 13.
    Padayatty SJ, Arie K, Yaohui W, Peter E, Oran K, Je-Hyuk L, Shenglin C, Christopher C, Anand D, Dutta SK (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22(1):18–35. CrossRefPubMedGoogle Scholar
  14. 14.
    Massey LK, Liebman M, Kynastgales SA (2005) Ascorbate increases human oxaluria and kidney stone risk. J Nutr 135(7):1673–1677. CrossRefPubMedGoogle Scholar
  15. 15.
    Shi F, Zhang Y, Na W, Zhang X, Li Y, Su X (2016) Graphene quantum dots as selective fluorescence sensor for the detection of ascorbic acid and acid phosphatase via Cr(vi)/Cr(iii)-modulated redox reaction. J Mater Chem B 4(19):3278–3285. CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Li Y, Wang Y, Zheng J, Yang R (2014) A new strategy for fluorometric detection of ascorbic acid based on hydrolysis and redox reaction. RSC Adv 4(66):35112–35115. CrossRefGoogle Scholar
  17. 17.
    Huang S, Zhu F, Xiao Q, Su W, Sheng J, Huang C, Hu B (2014) A CdTe/CdS/ZnS core/shell/shell QDs-based “OFF-ON” fluorescent biosensor for sensitive and specific determination of L-ascorbic acid. RSC Adv 4(87):46751–46761. CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Guo S, Cheng S, Ji X, He Z (2017) Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement. Biosens Bioelectron 94:478–484CrossRefGoogle Scholar
  19. 19.
    Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. CrossRefGoogle Scholar
  20. 20.
    Rong M, Lin L, Song X, Wang Y, Zhong Y, Yan J, Feng Y, Zeng X, Chen X (2015) Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens Bioelectron 68:210–217. CrossRefPubMedGoogle Scholar
  21. 21.
    Carrasco PM, García I, Yate L, Tena Zaera R, Cabañero G, Grande HJ, Ruiz V (2016) Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection. Carbon 109:658–665. CrossRefGoogle Scholar
  22. 22.
    Liu Y, Gong X, Gao Y, Song S, Wu X, Shuang S, Dong C (2016) Carbon-based dots co-doped with nitrogen and sulfur for Cr(vi) sensing and bioimaging. RSC Adv 6(34):28477–28483. CrossRefGoogle Scholar
  23. 23.
    Zhao P, He K, Han Y, Zhang Z, Yu M, Wang H, Huang Y, Nie Z, Yao S (2015) Near-infrared dual-emission quantum dots–gold nanoclusters Nanohybrid via co-template synthesis for Ratiometric fluorescent detection and bioimaging of ascorbic acid in vitro and in vivo. Anal Chem 87(19):9998–10005. CrossRefPubMedGoogle Scholar
  24. 24.
    Gong X, Liu Y, Yang Z, Shuang S, Zhang Z, Dong C (2017) An “on-off-on” fluorescent nanoprobe for recognition of chromium(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Anal Chim Acta 968:85–96. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of PharmacyFujian University of Traditional Chinese MedicineFuzhouChina
  2. 2.Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
  3. 3.College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina

Personalised recommendations